297 research outputs found

    The PanCam Instrument for the ExoMars Rover

    Get PDF
    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe

    Astrobiology at Arizona State University: An Overview of Accomplishments

    Get PDF
    During our five years as an NAI charter member, Arizona State University sponsored a broadly-based program of research and training in Astrobiology to address the origin, evolution and distribution of life in the Solar System. With such a large, diverse and active team, it is not possible in a reasonable space, to cover all details of progress made over the entire five years. The following paragraphs provide an overview update of the specific research areas pursued by the Arizona State University (ASU) Astrobiology team at the end of Year 5 and at the end of the 4 month and subsequent no cost month extensions. for a more detailed review, the reader is referred to the individual annual reports (and Executive Summaries) submitted to the NAI at the end of each of our five years of membership. Appended in electronic form is our complete publication record for all five years, plus a tabulation of undergraduates, graduate students and post-docs supported by our program during this time. The overarching theme of ASU s Astrobiology program was "Exploring the Living Universe: Studies of the Origin, Evolution and Distribution of Life in the Solar System". The NAi-funded research effort was organized under three basic sub- themes: 1. Origins of the Basic Building Blocks of Life. 2. Early Biosphere Evolution. and 3. Exploring for Life in the Solar System. These sub-theme areas were in turn, subdivided into Co-lead research modules. In the paragraphs that follow, accomplishments for individual research modules are briefly outlined, and the key participants presented in tabular form. As noted, publications for each module are appended in hard copy and digital formats, under the name(s) of lead co-Is

    Collaborative virtual reality platform for visualizing space data and mission planning

    Get PDF
    This paper presents the system architecture of a collaborative virtual environment in which distributed multidisciplinary teams involved in space exploration activities come together and explore areas of scientific interest of a planet for future missions. The aim is to reduce the current challenges of distributed scientific and engineering meetings that prevent the exploitation of their collaborative potential, as, at present, expertise, tools and datasets are fragmented. This paper investigates the functional characteristics of a software framework that addresses these challenges following the design science research methodology in the context of the space industry and research. An implementation of the proposed architecture and a validation process with end users, based on the execution of different use cases, are described. These use cases cover relevant aspects of real science analysis and operation, including planetary data visualization, as the system aims at being used in future European missions. This validation suggests that the system has the potential to enhance the way space scientists will conduct space science research in the future

    Lithospheric Thickness on Venus from Magellan Gravity and Topography

    Get PDF
    This final report summarizes work carried out during my PGG funding for the period 3/1/02-2/28/05. Research under this award has focused on the areas described below and is represented in the publications list, invited departmental lectures and presentations at professional meetings. The grant has provided partial support for 1 graduate student, Renee Bulow, and provided 1 month per year of my summer salary. The linking theme of the research performed under this award is the manifestation of the thermal history of terrestrial planetary bodies through the existence and evolution of internally-generated magnetic fields (martian magnetism research, and beginnings of lunar magnetism research), mantle dynamical processes and their resulting surface expression (studies of Venusian coronae task) and the crust and upper mantle structure of a planetary body (lunar seismic structure task). The investigations build upon and extend my previous work supported by the PGG program

    The Mistastin Lake Impact Structure As A Terrestrial Analogue Site For Lunar Science And Exploration

    Get PDF
    The impact cratering record on the Moon is important for many reasons, from understanding early solar system chronology to probing the lunar interior. In order to maximize scientific return from future lunar missions, it is useful to: 1) study terrestrial impact craters to better understand impact processes and products, and 2) develop appropriate human and robotic exploration strategies aligned with geological goals. This research shows that the intermediate-size Mistastin Lake impact structure, in northern Labrador, Canada, is an unparalleled lunar analogue site, which includes both an anorthositic target and an almost complete suite of impact lithologies, including proximal ejecta deposits. New remote sensing, field mapping, and microscopy data are used to develop new structural and geological models of the Mistastin Lake impact structure. The results of this study show that a multi-stage ejecta emplacement model is required to explain the observations. It is also shown that impact melt-bearing breccias or “suevites” at Mistastin were emplaced as flows, were never airborne, and were formed from the mixing of impact melt flows with underlying lithic materials. In order to maximize scientific return from future lunar missions, this work also focused on developing appropriate human and robotic exploration strategies aligned with geological goals. We show that precursor reconnaissance missions provide surface geology visualization at resolutions and from viewpoints not achievable from orbit. Within such a mission concept, geological tasks are best divided between fixed-executional approaches, in which tasks are fairly repetitive and are carried out by an unskilled surface agent, and an adaptive-exploratory approach, where a skilled agent makes observations and interpretations and the field plan can adapt to these findings as the agent progresses. Operational considerations that help increase scientific return include: extensive pre-mission planning using remote sensing data; defining flexible plans and science priorities to respond to changing conditions; including mutually cross-trained scientists and engineers on the field team; and adapting traverses to accommodate field crew input and autonomy. A phased approach for human exploration proved successful in incorporating astronaut feedback and allowed more autonomy for astronauts to determine optimal sampling localities and sites for detailed observations

    Mars 2020 Perseverance Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation

    Get PDF
    Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission’s Perseverance rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory Curiosity rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover’s Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover’s traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover’s sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions

    The 2016 UK Space Agency Mars Utah Rover Field Investigation (MURFI)

    Get PDF
    The 2016 Mars Utah Rover Field Investigation (MURFI) was a Mars rover field trial run by the UK Space Agency in association with the Canadian Space Agency's 2015/2016 Mars Sample Return Analogue Deployment mission. MURFI had over 50 participants from 15 different institutions around the UK and abroad. The objectives of MURFI were to develop experience and leadership within the UK in running future rover field trials; to prepare the UK planetary community for involvement in the European Space Agency/Roscosmos ExoMars 2020 rover mission; and to assess how ExoMars operations may differ from previous rover missions. Hence, the wider MURFI trial included a ten-day (or ten-‘sol’) ExoMars rover-like simulation. This comprised an operations team and control centre in the UK, and a rover platform in Utah, equipped with instruments to emulate the ExoMars rovers remote sensing and analytical suite. The operations team operated in ‘blind mode’, where the only available data came from the rover instruments, and daily tactical planning was performed under strict time constraints to simulate real communications windows. The designated science goal of the MURFI ExoMars rover-like simulation was to locate in-situ bedrock, at a site suitable for sub-surface core-sampling, in order to detect signs of ancient life. Prior to “landing”, the only information available to the operations team were Mars-equivalent satellite remote sensing data, which were used for both geologic and hazard (e.g., slopes, loose soil) characterisation of the area. During each sol of the mission, the operations team sent driving instructions and imaging/analysis targeting commands, which were then enacted by the field team and rover-controllers in Utah. During the ten-sol mission, the rover drove over 100 m and obtained hundreds of images and supporting observations, allowing the operations team to build up geologic hypotheses for the local area and select possible drilling locations. On sol 9, the team obtained a subsurface core sample that was then analyzed by the Raman spectrometer. Following the conclusion of the ExoMars-like component of MURFI, the operations and field team came together to evaluate the successes and failures of the mission, and discuss lessons learnt for ExoMars rover and future field trials. Key outcomes relevant to ExoMars rover included a key recognition of the importance of field trials for (i) understanding how to operate the ExoMars rover instruments as a suite, (ii) building an operations planning team that can work well together under strict time-limited pressure, (iii) developing new processes and workflows relevant to the ExoMars rover, (iv) understanding the limits and benefits of satellite mapping and (v) practicing efficient geological interpretation of outcrops and landscapes from rover-based data, by comparing the outcomes of the simulated mission with post-trial, in-situ field observations. In addition, MURFI was perceived by all who participated as a vital learning experience, especially for early and mid-career members of the team, and also demonstrated the UK capability of implementing a large rover field trial. The lessons learnt from MURFI are therefore relevant both to ExoMars rover, and to future rover field trials

    Field Geologic Observation and Sample Collection Strategies for Planetary Surface Exploration: Insights from the 2010 Desert RATS Geologist Crewmembers

    Get PDF
    Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives
    corecore