23,708 research outputs found

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Level-Set Based Artery-Vein Separation in Blood Pool Agent CE-MR Angiograms

    Get PDF
    Blood pool agents (BPAs) for contrast-enhanced (CE) magnetic-resonance angiography (MRA) allow prolonged imaging times for higher contrast and resolution. Imaging is performed during the steady state when the contrast agent is distributed through the complete vascular system. However, simultaneous venous and arterial enhancement in this steady state hampers interpretation. In order to improve visualization of the arteries and veins from steady-state BPA data, a semiautomated method for artery-vein separation is presented. In this method, the central arterial axis and central venous axis are used as initializations for two surfaces that simultaneously evolve in order to capture the arterial and venous parts of the vasculature using the level-set framework. Since arteries and veins can be in close proximity of each other, leakage from the evolving arterial (venous) surface into the venous (arterial) part of the vasculature is inevitable. In these situations, voxels are labeled arterial or venous based on the arrival time of the respective surface. The evolution is steered by external forces related to feature images derived from the image data and by internal forces related to the geometry of the level sets. In this paper, the robustness and accuracy of three external forces (based on image intensity, image gradient, and vessel-enhancement filtering) and combinations of them are investigated and tested on seven patient datasets. To this end, results with the level-set-based segmentation are compared to the reference-standard manually obtained segmentations. Best results are achieved by applying a combination of intensity- and gradient-based forces and a smoothness constraint based on the curvature of the surface. By applying this combination to the seven datasets, it is shown that, with minimal user interaction, artery-vein separation for improved arterial and venous visualization in BPA CE-MRA can be achieved

    In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography

    Get PDF
    We present in vivo volumetric images of human retinal micro-circulation using Fourier-domain optical coherence tomography (Fd-OCT) with the phase-variance based motion contrast method. Currently fundus fluorescein angiography (FA) is the standard technique in clinical settings for visualizing blood circulation of the retina. High contrast imaging of retinal vasculature is achieved by injection of a fluorescein dye into the systemic circulation. We previously reported phase-variance optical coherence tomography (pvOCT) as an alternative and non-invasive technique to image human retinal capillaries. In contrast to FA, pvOCT allows not only noninvasive visualization of a two-dimensional retinal perfusion map but also volumetric morphology of retinal microvasculature with high sensitivity. In this paper we report high-speed acquisition at 125 kHz A-scans with pvOCT to reduce motion artifacts and increase the scanning area when compared with previous reports. Two scanning schemes with different sampling densities and scanning areas are evaluated to find optimal parameters for high acquisition speed in vivo imaging. In order to evaluate this technique, we compare pvOCT capillary imaging at 3x3 mm^2 and 1.5x1.5 mm^2 with fundus FA for a normal human subject. Additionally, a volumetric view of retinal capillaries and a stitched image acquired with ten 3x3 mm^2 pvOCT sub-volumes are presented. Visualization of retinal vasculature with pvOCT has potential for diagnosis of retinal vascular diseases

    Visualization of Endothelial Actin Cytoskeleton in the Mouse Retina

    Get PDF
    Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation

    Spatial development of transport structures in apple (Malus x domestica Borkh.) fruit

    Get PDF
    The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus x domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of ‘Jonagold’ apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease towards the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9 to 12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 meter at 9 weeks after full bloom, to more than 20 meter corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualisations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit

    Whole-brain vasculature reconstruction at the single capillary level

    Get PDF
    The distinct organization of the brain’s vascular network ensures that it is adequately supplied with oxygen and nutrients. However, despite this fundamental role, a detailed reconstruction of the brain-wide vasculature at the capillary level remains elusive, due to insufficient image quality using the best available techniques. Here, we demonstrate a novel approach that improves vascular demarcation by combining CLARITY with a vascular staining approach that can fill the entire blood vessel lumen and imaging with light-sheet fluorescence microscopy. This method significantly improves image contrast, particularly in depth, thereby allowing reliable application of automatic segmentation algorithms, which play an increasingly important role in high-throughput imaging of the terabyte-sized datasets now routinely produced. Furthermore, our novel method is compatible with endogenous fluorescence, thus allowing simultaneous investigations of vasculature and genetically targeted neurons. We believe our new method will be valuable for future brain-wide investigations of the capillary network

    Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.

    Get PDF
    Importance: Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature. Objective: To describe OCTA features of iris racemose hemangioma. Design, Setting, and Participants: Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study. Main Outcomes and Measures: Features of iris racemose hemangioma on OCTA. Results: Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography. Conclusions and Relevance: Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography

    Two-photon microscopy : sequential imaging studies in vivo

    Get PDF
    Microscopists have always desired to look inside various organ tissues to study structure, function and dysfunction of their cellular constituents. In the past, this has frequently required tissue extraction and histological preparation to gain access. Traditional optical microscopy techniques, which use linear (one-photon) absorption processes for contrast generation, are limited to use near the tissue surface (< 80 µm) because at greater depths strong and multiple light scattering blurs the images. Scattering particularly strongly affects signal strength in confocal microscopy, which achieves three-dimensional resolution and optical sectioning with a detection pinhole that rejects all light that appears not to originate from the focus. New optical microscopy techniques have been developed that use nonlinear light-matter interactions to generate signal contrast only within a thin raster-scanned plane. Since its first demonstration over a decade ago, two-photon microscopy has been applied to a variety of imaging tasks and has now become the technique of choice for fluorescence microscopy in thick tissue preparations and in live animals. The gain in resolution over conventional in vivo imaging techniques has been several orders of magnitude. Neuroscientists have used it to measure calcium dynamics deep in brain slices and in live animals, blood flow measurement, neuronal plasticity and to monitor neurodegenerative disease models in brain slices and in live rodents. These types of applications define the most important niche for two-photon microscopy - high-resolution imaging of physiology, morphology and cell-cell interactions in intact tissue. Clearly the biggest advantage of two-photon microscopy is in longitudinal monitoring of rodent models of disease or plasticity over days to weeks. The aim of this article is to discuss some methodological principles, and show some applications of this technique obtained from our laboratory in the area of acute experimental stroke research.peer-reviewe

    Regional diversity in the murine cortical vascular network is revealed by synchrotron X-ray tomography and is amplified with age

    Get PDF
    Cortical bone is permeated by a system of pores, occupied by the blood supply and osteocytes. With ageing, bone mass reduction and disruption of the microstructure are associated with reduced vascular supply. Insight into the regulation of the blood supply to the bone could enhance the understanding of bone strength determinants and fracture healing. Using synchrotron radiation-based computed tomography, the distribution of vascular canals and osteocyte lacunae was assessed in murine cortical bone and the influence of age on these parameters was investigated. The tibiofibular junction from 15-week- and 10-month-old female C57BL/6J mice were imaged post-mortem. Vascular canals and three-dimensional spatial relationships between osteocyte lacunae and bone surfaces were computed for both age groups. At 15 weeks, the posterior region of the tibiofibular junction had a higher vascular canal volume density than the anterior, lateral and medial regions. Intracortical vascular networks in anterior and posterior regions were also different, with connectedness in the posterior higher than the anterior at 15 weeks. By 10 months, cortices were thinner, with cortical area fraction and vascular density reduced, but only in the posterior cortex. This provided the first evidence of age-related effects on murine bone porosity due to the location of the intracortical vasculature. Targeting the vasculature to modulate bone porosity could provide an effective way to treat degenerative bone diseases, such as osteoporosis
    corecore