5,164 research outputs found

    Simulation and Visualization of Thermal Metaphor in a Virtual Environment for Thermal Building Assessment

    Get PDF
    La référence est présente sur HAL mais est incomplète (il manque les co-auteurs et le fichier pdf).The current application of the design process through energy efficiency in virtual reality (VR) systems is limited mostly to building performance predictions, as the issue of the data formats and the workflow used for 3D modeling, thermal calculation and VR visualization. The importance of energy efficiency and integration of advances in building design and VR technology have lead this research to focus on thermal simulation results visualized in a virtual environment to optimize building design, particularly concerning heritage buildings. The emphasis is on the representation of thermal data of a room simulated in a virtual environment (VE) in order to improve the ways in which thermal analysis data are presented to the building stakeholder, with the aim of increasing accuracy and efficiency. The approach is to present more immersive thermal simulation and to project the calculation results in projective displays particularly in Immersion room (CAVE-like). The main idea concerning the experiment is to provide an instrument of visualization and interaction concerning the thermal conditions in a virtual building. Thus the user can immerge, interact, and perceive the impact of the modifications generated by the system, regarding the thermal simulation results. The research has demonstrated it is possible to improve the representation and interpretation of building performance data, particularly for thermal results using visualization techniques.Direktorat Riset dan Pengabdian Masyarakat (DRPM) Universitas Indonesia Research Grant No. 2191/H2.R12/HKP.05.00/201

    Proposal of a health care network based on big data analytics for PDs

    Get PDF
    Health care networks for Parkinson's disease (PD) already exist and have been already proposed in the literature, but most of them are not able to analyse the vast volume of data generated from medical examinations and collected and organised in a pre-defined manner. In this work, the authors propose a novel health care network based on big data analytics for PD. The main goal of the proposed architecture is to support clinicians in the objective assessment of the typical PD motor issues and alterations. The proposed health care network has the ability to retrieve a vast volume of acquired heterogeneous data from a Data warehouse and train an ensemble SVM to classify and rate the motor severity of a PD patient. Once the network is trained, it will be able to analyse the data collected during motor examinations of a PD patient and generate a diagnostic report on the basis of the previously acquired knowledge. Such a diagnostic report represents a tool both to monitor the follow up of the disease for each patient and give robust advice about the severity of the disease to clinicians

    Enhanced Concrete Bridge Assessment Using Artificial Intelligence and Mixed Reality

    Get PDF
    Conventional methods for visual assessment of civil infrastructures have certain limitations, such as subjectivity of the collected data, long inspection time, and high cost of labor. Although some new technologies (i.e. robotic techniques) that are currently in practice can collect objective, quantified data, the inspector\u27s own expertise is still critical in many instances since these technologies are not designed to work interactively with human inspector. This study aims to create a smart, human-centered method that offers significant contributions to infrastructure inspection, maintenance, management practice, and safety for the bridge owners. By developing a smart Mixed Reality (MR) framework, which can be integrated into a wearable holographic headset device, a bridge inspector, for example, can automatically analyze a certain defect such as a crack that he or she sees on an element, display its dimension information in real-time along with the condition state. Such systems can potentially decrease the time and cost of infrastructure inspections by accelerating essential tasks of the inspector such as defect measurement, condition assessment and data processing to management systems. The human centered artificial intelligence (AI) will help the inspector collect more quantified and objective data while incorporating inspector\u27s professional judgment. This study explains in detail the described system and related methodologies of implementing attention guided semi-supervised deep learning into mixed reality technology, which interacts with the human inspector during assessment. Thereby, the inspector and the AI will collaborate/communicate for improved visual inspection

    The energy efficiency management at urban scale by means of integrated modelling

    Get PDF
    Innovative technologies such as ICTs are recognized as being a key player against climate change and the use of sensors and actuators can efficiently control the whole energy chain in the Smart Thermal Grids at district level. On the other side, advances on 3D modelling, visualization and interaction technologies enable user profiling and represent part of the holistic approach which aims at integrating renewable energy solutions in the existing building stock. To unlock the potentiality of these technologies, the case study selected for this research focuses on interoperability between Building Information Models (BIM), GIS (Geographic Information System) models and Energy Analysis Models (EAM) for designing Renewable Energy Strategies (RES) among the demonstrator. The objectives aims at making a whole series of data concerning the energy efficiency and reduction at district level usable for various stakeholders, by creating a District Information Model (DIM). The described system also integrates BIM and district level 3D models with real-time data from sensors to analyse and correlate buildings utilization and provide real-time energy-related behaviours. An important role is played by the energy simulation through the EAM for matching measured and simulated data and to assess the energy performance of buildings starting from a BIM model or shared data. With this purpose interoperability tests are carried out between the BIM models and quasi-steady energy analysis tools in order to optimize the calculation of the energy demand according to the Italian technical specification UNI TS 11300. Information about the roofs slope and their orientation from the GIS model are used to predict the use of renewable energy – solar thermal and PV – within the selected buildings (both public and private) of the demonstrator in Turin, Italy. The expected results are a consistent reduction in both energy consume and CO2 emissions by enabling a more efficient energy distribution policies, according to the real characteristics of district buildings as well as a more efficient utilization and maintenance of the energy distribution network, based on social behaviour and users attitudes and demand. In the future the project will allow open access with personal devices and A/R visualization of energy-related information to client applications for energy and cost-analysis, tariff planning and evaluation, failure identification and maintenance, energy information sharing in order to increase the user’s awareness in the field of energy consumption

    Open-source digital technologies for low-cost monitoring of historical constructions

    Get PDF
    This paper shows new possibilities of using novel, open-source, low-cost platforms for the structural health monitoring of heritage structures. The objective of the study is to present an assessment of increasingly available open-source digital modeling and fabrication technologies in order to identify the suitable counterparts of the typical components of a continuous static monitoring system for a historical construction. The results of the research include a simple case-study, which is presented with low-cost, open-source, calibrated components, as well as an assessment of different alternatives for deploying basic structural health monitoring arrangements. The results of the research show the great potential of these existing technologies that may help to promote a widespread and cost-efficient monitoring of the built cultural heritage. Such scenario may contribute to the onset of commonplace digital records of historical constructions in an open-source, versatile and reliable fashion.Peer ReviewedPostprint (author's final draft

    Augmented reality and GIS: On the possibilities and limits of markerless AR

    Get PDF
    Ponencias, comunicaciones y pósters presentados en el 17th AGILE Conference on Geographic Information Science "Connecting a Digital Europe through Location and Place", celebrado en la Universitat Jaume I del 3 al 6 de junio de 2014.The application of Augmented Reality (AR) in the geo-spatial domain offers huge potentials: AR can visualize invisible properties of spatial entities, can display historic data for them, or can help in finding places. Whatever the application is, AR in the geo-spatial domain will often be purely sensor based, thus without the help of visual or sensory markers. In this paper we analyse the achievable accuracy of AR projections under everyday conditions with consumer hardware. We can show that AR can be applied in applications in smaller geographic scale, but is not sufficient if it comes to the preciseness required when inspecting infrastructural data of small scale

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database
    • …
    corecore