574 research outputs found

    How efficiently can one untangle a double-twist? Waving is believing!

    Get PDF
    It has long been known to mathematicians and physicists that while a full rotation in three-dimensional Euclidean space causes tangling, two rotations can be untangled. Formally, an untangling is a based nullhomotopy of the double-twist loop in the special orthogonal group of rotations. We study a particularly simple, geometrically defined untangling procedure, leading to new conclusions regarding the minimum possible complexity of untanglings. We animate and analyze how our untangling operates on frames in 3-space, and teach readers in a video how to wave the nullhomotopy with their hands.Comment: To appear in The Mathematical Intelligencer. For supplemental videos, see http://www.math.iupui.edu/~dramras/double-tip.html , or https://www.youtube.com/playlist?list=PLAfnEXvHU52ldJaOye-8kZV_C1CjxGx2C . For a supplemental virtual reality experience, see http://meglab.wikidot.com/visualizatio

    Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion

    Full text link
    This paper aims to solve a fundamental problem in intensity-based 2D/3D registration, which concerns the limited capture range and need for very good initialization of state-of-the-art image registration methods. We propose a regression approach that learns to predict rotation and translations of arbitrary 2D image slices from 3D volumes, with respect to a learned canonical atlas co-ordinate system. To this end, we utilize Convolutional Neural Networks (CNNs) to learn the highly complex regression function that maps 2D image slices into their correct position and orientation in 3D space. Our approach is attractive in challenging imaging scenarios, where significant subject motion complicates reconstruction performance of 3D volumes from 2D slice data. We extensively evaluate the effectiveness of our approach quantitatively on simulated MRI brain data with extreme random motion. We further demonstrate qualitative results on fetal MRI where our method is integrated into a full reconstruction and motion compensation pipeline. With our CNN regression approach we obtain an average prediction error of 7mm on simulated data, and convincing reconstruction quality of images of very young fetuses where previous methods fail. We further discuss applications to Computed Tomography and X-ray projections. Our approach is a general solution to the 2D/3D initialization problem. It is computationally efficient, with prediction times per slice of a few milliseconds, making it suitable for real-time scenarios.Comment: 8 pages, 4 figures, 6 pages supplemental material, currently under review for MICCAI 201

    The first step for neuroimaging data analysis: DICOM to NIfTI conversion

    Get PDF
    BACKGROUND: Clinical imaging data are typically stored and transferred in the DICOM format, whereas the NIfTI format has been widely adopted by scientists in the neuroimaging community. Therefore, a vital initial step in processing the data is to convert images from the complicated DICOM format to the much simpler NIfTI format. While there are a number of tools that usually handle DICOM to NIfTI conversion seamlessly, some variations can disrupt this process. NEW METHOD: We provide some insight into the challenges faced with image conversion. First, different manufacturers implement the DICOM format differently which complicates the conversion. Second, different modalities and sub-modalities may need special treatment during conversion. Lastly, the image transferring and archiving can also impact the DICOM conversion. RESULTS: We present results in several error-prone domains, including the slice order for functional imaging, phase encoding direction for distortion correction, effect of diffusion gradient direction, and effect of gantry correction for some imaging modality. COMPARISON WITH EXISTING METHODS: Conversion tools are often designed for a specific manufacturer or modality. The tools and insight we present here are aimed at different manufacturers or modalities. CONCLUSIONS: The imaging conversion is complicated by the variation of images. An understanding of the conversion basics can be helpful for identifying the source of the error. Here we provide users with simple methods for detecting and correcting problems. This also serves as an overview for developers who wish to either develop their own tools or adapt the open source tools created by the authors

    Low-latency compression of mocap data using learned spatial decorrelation transform

    Full text link
    Due to the growing needs of human motion capture (mocap) in movie, video games, sports, etc., it is highly desired to compress mocap data for efficient storage and transmission. This paper presents two efficient frameworks for compressing human mocap data with low latency. The first framework processes the data in a frame-by-frame manner so that it is ideal for mocap data streaming and time critical applications. The second one is clip-based and provides a flexible tradeoff between latency and compression performance. Since mocap data exhibits some unique spatial characteristics, we propose a very effective transform, namely learned orthogonal transform (LOT), for reducing the spatial redundancy. The LOT problem is formulated as minimizing square error regularized by orthogonality and sparsity and solved via alternating iteration. We also adopt a predictive coding and temporal DCT for temporal decorrelation in the frame- and clip-based frameworks, respectively. Experimental results show that the proposed frameworks can produce higher compression performance at lower computational cost and latency than the state-of-the-art methods.Comment: 15 pages, 9 figure

    AUTONOMOUS SPACECRAFT RENDEZVOUS WITH A TUMBLING OBJECT: APPLIED REACHABILITY ANALYSIS AND GUIDANCE AND CONTROL STRATEGIES

    Get PDF
    Rendezvous and proximity operations are an essential component of both military and commercial space missions and are rising in complexity. This dissertation presents an applied reachability analysis and develops a computationally feasible autonomous guidance algorithm for the purpose of spacecraft rendezvous and proximity maneuvers around a tumbling object. Recent advancements enable the use of more sophisticated, computation-based algorithms, instead of traditional control methods. These algorithms are desirable for autonomous applications due to their ability to optimize performance and explicitly handle constraints (e.g., safety, control limits). In an autonomous setting, however, some important questions must be answered before an algorithm implementation can be realized. First, the feasibility of a maneuver is addressed by analyzing the fundamental spacecraft relative dynamics. Particularly, a set of initial relative states is computed and visualized from which the desired rendezvous state can be reached (i.e., backward reachability analysis). Second, with the knowledge that a maneuver is feasible, the Model Predictive Control (MPC) framework is utilized to design a stabilizing feedback control law that optimizes performance and incorporates constraints such as control saturation limits and collision avoidance. The MPC algorithm offers a computationally efficient guidance strategy that could potentially be implemented in real-time on-board a spacecraft.http://archive.org/details/autonomousspacec1094560364Major, United States Air ForceApproved for public release; distribution is unlimited

    Multimodal Image Fusion and Its Applications.

    Full text link
    Image fusion integrates different modality images to provide comprehensive information of the image content, increasing interpretation capabilities and producing more reliable results. There are several advantages of combining multi-modal images, including improving geometric corrections, complementing data for improved classification, and enhancing features for analysis...etc. This thesis develops the image fusion idea in the context of two domains: material microscopy and biomedical imaging. The proposed methods include image modeling, image indexing, image segmentation, and image registration. The common theme behind all proposed methods is the use of complementary information from multi-modal images to achieve better registration, feature extraction, and detection performances. In material microscopy, we propose an anomaly-driven image fusion framework to perform the task of material microscopy image analysis and anomaly detection. This framework is based on a probabilistic model that enables us to index, process and characterize the data with systematic and well-developed statistical tools. In biomedical imaging, we focus on the multi-modal registration problem for functional MRI (fMRI) brain images which improves the performance of brain activation detection.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/120701/1/yuhuic_1.pd

    Development and Characterization of Velocity Workspaces for the Human Knee.

    Get PDF
    The knee joint is the most complex joint in the human body. A complete understanding of the physical behavior of the joint is essential for the prevention of injury and efficient treatment of infirmities of the knee. A kinematic model of the human knee including bone surfaces and four major ligaments was studied using techniques pioneered in robotic workspace analysis. The objective of this work was to develop and test methods for determining displacement and velocity workspaces for the model and investigate these workspaces. Data were collected from several sources using magnetic resonance imaging (MRI) and computed tomography (CT). Geometric data, including surface representations and ligament lengths and insertions, were extracted from the images to construct the kinematic model. Fixed orientation displacement workspaces for the tibia relative to the femur were computed using ANSI C programs and visualized using commercial personal computer graphics packages. Interpreting the constraints at a point on the fixed orientation displacement workspace, a corresponding velocity workspace was computed based on extended screw theory, implemented using MATLAB(TM), and visually interpreted by depicting basis elements. With the available data and immediate application of the displacement workspace analysis to clinical settings, fixed orientation displacement workspaces were found to hold the most promise. Significant findings of the velocity workspace analysis include the characterization of the velocity workspaces depending on the interaction of the underlying two-systems of the constraint set, an indication of the contributions from passive constraints to force closure of the joint, computational means to find potentially harmful motions within the model, and realistic motions predicted from solely geometric constraints. Geometric algebra was also investigated as an alternative method of representing the underlying mathematics of the computations with promising results. Recommendations for improving and continuing the research may be divided into three areas: the evolution of the knee model to allow a representation for cartilage and the menisci to be used in the workspace analysis, the integration of kinematic data with the workspace analysis, and the development of in vivo data collection methods to foster validation of the techniques outlined in this dissertation
    • …
    corecore