3 research outputs found

    Kaasumaisten tuoksukomponenttien tuottaminen keinotekoisille haistelujÀrjestelmille

    Get PDF
    Even though recent studies have led to a more refined understanding of the mechanisms related to odorant detection, the vertebrate olfactory system remains the least understood sense of the human senses. The total amount of sensing elements, olfactory receptor proteins, in the human nose is counted in tens or hundreds of millions, thus recreating this kind of complex system artificially is challenging. Human nose cannot be seen as an objective sensor, so creating an artificial olfactory system, often called electronic nose or “e-nose”, which is capable to objectively and reliably classify odors in a wide range is a key research question in the field of artificial olfaction. In addition to the detection system in e-nose instruments, something analogical to human brain is needed to interpret the signals in the detecting sensors. Production of easily controllable and measurable odor stimulus is needed when studying human olfaction, olfaction-related physiology and psychological reactions to odors. Controlled odor producing instruments are called olfactometers. In this Master Thesis, a compact olfactometer able to produce controlled continuous odor stimuli from three individual gaseous components is presented. The main objective was to study and verify if the presented system can produce gas streams with the stable concentrations of different odor components. For measuring the output air stream, the device used is a chemical detector ChemPro 100i, that is based on aspiration ion mobility spectrometry (aIMS) technology. The presented olfactometer was used to produce synthetic jasmine scent using three main odor components from jasmine oil. Experiments were conducted to verify the functionality of our olfactometer and to analyze the capability to distinguish different odor component concentrations using the ChemPro 100i data. Further to test the functionality of our olfactometer, we run a short pilot test in which human participants compared a synthetically created scent of jasmine and the scent of real jasmine oil. Results showed that from the measurement data, different concentration sets of three components were able to be distinguished. Human pilot results showed that human nose was confused when comparing three component synthetic jasmine with real jasmine scent but could distinguish between two component synthetic jasmine and real jasmine scent

    Égalisation adaptative et non invasive de la rĂ©ponse temps-frĂ©quence d'une petite salle

    Get PDF
    RÉSUMÉ Dans le cadre de cette recherche, on s’intĂ©resse au son, Ă  l’environnement dans lequel il se propage, Ă  l’interaction entre l’onde de son et son canal de transmission ainsi qu’aux transformations induites par les composantes d’une chaine audio. Le contexte prĂ©cis Ă©tudiĂ© est celui de l’écoute musicale sur haut-parleurs.Pour le milieu dans lequel l’onde se propage, comme pour tout canal de transmission, il existe des fonctions mathĂ©matiques permettant de caractĂ©riser les transformations induites par le canal sur un signal qui le traverse. Un signal Ă©lectrique sert de signal d’excitation pour ce canal constituĂ© en l’occurrence d’un amplificateur, d’un haut-parleur et de la salle dans laquelle a lieu l’écoute, qui selon ses caractĂ©ristiques, retourne en sortie Ă  la position d’écoute une onde de son altĂ©rĂ©e. RĂ©ponse en frĂ©quence, rĂ©ponse Ă  l’impulsion, fonction de transfert ; les mathĂ©matiques utilisĂ©es ne diffĂšrent en rien de celles servant communĂ©ment Ă  la caractĂ©risation d’un canal de transmission ou Ă  l’expression des fonctions liant les sorties d’un systĂšme linĂ©aire Ă  ses entrĂ©es. Naturellement, il y a un but Ă  cet exercice de modĂ©lisation : l’obtention de la rĂ©ponse de la chaine amplificateur/salle/haut-parleur rend possible sa correction. Il est commun dans bien des contextes d’écoute, qu’un filtre soit insĂ©rĂ© dans la chaine audio entre la source (exemple : lecteur CD) et le haut-parleur qui transforme le signal Ă©lectrique en signal acoustique propagĂ© dans la salle. Ce filtre, dit « Ă©galisateur », a pour but de compenser en frĂ©quences l’effet des composantes de la chaine audio et de la salle sur le signal sonore y Ă©tant transmis. Ses propriĂ©tĂ©s dĂ©coulent de celles de l’amplificateur, du haut-parleur et de la salle. Bien qu’analytiquement rigoureuse, l’approche physique, centrĂ©e sur la modĂ©lisation physique du haut-parleur et sur l’équation de propagation de l’onde acoustique, est mal adaptĂ©e aux salles Ă  gĂ©omĂ©trie complexe ou changeante au fil du temps. La seconde approche, la modĂ©lisation expĂ©rimentale, abordĂ©e dans ce travail, fait abstraction des propriĂ©tĂ©s physiques. La chaine amplificateur/haut-parleur/salle y est plutĂŽt vue comme une « boite noire » comprenant entrĂ©es et sorties. Le problĂšme Ă©tudiĂ© est celui de la caractĂ©risation d’un systĂšme Ă©lectro-acoustique ayant comme unique entrĂ©e un signal Ă©mis Ă  travers un haut-parleur dans une salle, et comme unique sortie le signal captĂ© par un microphone placĂ© Ă  la position d’écoute. L’originalitĂ© de ce travail rĂ©side non seulement dans la technique dĂ©veloppĂ©e pour en arriver Ă  cette caractĂ©risation, mais surtout dans les contraintes imposĂ©es dans la maniĂšre d’y arriver. La majoritĂ© des techniques documentĂ©es Ă  ce jour font appel Ă  des signaux d’excitation dĂ©diĂ©s Ă  la mesure ; des signaux dotĂ©s de caractĂ©ristiques favorables Ă  la simplification du calcul de rĂ©ponse impulsionnelle qui en dĂ©coule. Des signaux connus sont Ă©mis Ă  travers un haut-parleur et la rĂ©ponse Ă  leur excitation est captĂ©e Ă  l’aide d’un microphone Ă  la position d’écoute. L’exercice de mesure lui-mĂȘme pose problĂšme, notamment, lorsqu’un auditoire est prĂ©sent dans la salle. Aussi, la rĂ©ponse de la salle peut changer entre le moment de la prise de mesure et l’écoute si la salle est reconfigurĂ©e, par exemple un rideau est tirĂ© ou une estrade dĂ©placĂ©e. Dans le cas d’une salle de spectacle, le haut-parleur utilisĂ© peut varier selon le contexte. Un recensement des travaux dans lesquels des solutions Ă  ce problĂšme sont suggĂ©rĂ©es fut effectuĂ©. Le principal objectif est de dĂ©velopper une mĂ©thode innovatrice permettant de capturer la rĂ©ponse impulsionnelle de la chaine audio Ă  l’insu de l’auditoire. Pour ce faire, aucun signal dĂ©diĂ© Ă  la mesure ne doit ĂȘtre utilisĂ©. La mĂ©thode dĂ©veloppĂ©e permet la capture de la rĂ©ponse impulsionnelle Ă©lectro-acoustique en n’exploitant que les signaux musicaux. Le rĂ©sultat est, un algorithme permettant la modĂ©lisation dynamique et en continu de la rĂ©ponse d’une salle. Un filtre Ă©galisateur numĂ©rique Ă  rĂ©ponse impulsionnelle finie doit ĂȘtre conçu, lui aussi capable de s’adapter dynamiquement au comportement de la salle, mĂȘme lorsque celui-ci varie au fil du temps. La familiarisation avec des concepts plus avancĂ©s de programmation C++ orientĂ© objet Ă©tant de mise, une technique permettant d’exploiter des signaux musicaux afin d’obtenir la rĂ©ponse impulsionnelle et la rĂ©ponse en frĂ©quence du systĂšme fut testĂ©e expĂ©rimentalement sous forme d’un module VST. L’excitation est procurĂ©e par les signaux musicaux Ă©mis sur haut-parleurs durant l’écoute. Une moyenne mobile pondĂ©rĂ©e reconstruit statistiquement, au fil du temps, la rĂ©ponse de la salle sur toute la plage de frĂ©quences audibles. Dans le but d’en quantifier la performance, la rĂ©ponse en frĂ©quence obtenue est comparĂ©e Ă  celle obtenue par une mĂ©thode standard servant de rĂ©fĂ©rence. L’erreur quadratique moyenne sert de mĂ©trique d’erreur et montre que plus la musique dĂ©file, plus la rĂ©ponse en frĂ©quence obtenue s’apparente Ă  la rĂ©fĂ©rence pour un mĂȘme point d’écoute. Une approche Ă  rĂ©solution spectrale variable est utilisĂ©e pour construire, par bandes de frĂ©quences, la rĂ©ponse du filtre dĂ©coulant de celle de la chaine audio. La rĂ©ponse en frĂ©quence du systĂšme corrigĂ©e par le filtre Ă©galisateur est plus plane que celle du systĂšme initial. Des techniques explorĂ©es dans le cadre de ce travail de recherche ont menĂ© Ă  la publication d’un article scientifique dans une revue Ă  comitĂ© de lecture et un article de confĂ©rence dans lesquels des mĂ©thodes similaires furent exploitĂ©es en gĂ©nie des mines.----------ABSTRACT In this research, we are interested in sound, environment wherein it propagates, the interaction between the sound wave and a transmission channel, and the changes induced by the components of an audio chain. The specific context studied is that of listening to music on loudspeakers. For the environment in which sound wave propagates, like for any transmission channel, there are mathematical functions used to characterize the changes induced by a channel on the signal therethrough. An electric signal serves as a input for a system, in this case consisting of an amplifier, a loudspeaker, and the room where the listening takes place, which according to its characteristics, returns as an output at the listening position, an altered sound wave. Frequency response, impulse response, transfer function, the mathematics used are no different from those used commonly for the characterization of a transmission channel or the expression of the outputs of a linear system to its inputs. Naturally, there is a purpose to this modeling exercise: getting the frequency response of the amplifier/loundspeaker/room chain makes possible its equalization. It is common in many contexts of listening to find a filter inserted into the audio chain between the source (Eg CD player) and the amplifier/loudspeaker that converts the electrical signal to an acoustic signal propagated in the room. This filter, called “equalizer” is intended to compensate the frequency effect of the components of the audio chain and the room on the sound signal that will be transmitted. Properties for designing this filter are derived from those of the audio chain. Although analytically rigorous, physical approach, focusing on physical modeling of the loudspeaker and the propagation equation of the acoustic wave is ill-suited to rooms with complex geometry and changing over time. The second approach, experimental modeling, and therefore that addressed in this work, ignores physical properties. The system audio chain is rather seen as a “black box” including inputs and outputs. The problem studied is the characterization of an electro-acoustic system as having a single input signal transmitted through a speaker in a room, and a single output signal picked up by a microphone at the listening position. The originality of this work lies not only in the technique developed to arrive at this characterization, but especially in the constraints imposed in order to get there. The majority of technics documented to this date involve using excitation signals dedicated the measure; signals with favorable characteristics to simplify the calculation of the impulse response of the audio chain. Known signals are played through a loudspeaker and the room’s response to excitation is captured with a microphone at the listening position. The measurement exercise itself poses problem, especially when there is an audience in the room. Also, the response of the room may change between the time of the measurement and time of listening. If the room is reconfigured for example, a curtain is pulled or the stage moved. In the case of a theater, the speaker used may vary depending on the context. A survey of work in which solutions to this problem are suggested was made. The main objective is to develop an innovative method to capture the impulse response of an audio chain without the knowledge of the audience. To do this, no signal dedicated to the measurement should be used. The developed method allows the capture of the electro-acoustic impulse response exploiting only the music signals when it comes to a concert hall or using a movie sound track when a movie is a movie theater. As a result, an algorithm for modeling dynamicly and continuously the response of a room. A finite impulse response filter acting as a digital equalizer must be designed and also able to dynamically adapt the behavior of the room, even when it varies over time. Familiarization with more advanced programming concepts of object-oriented C++ being put, a technique to exploit music signals to obtain the impulse response and frequency response of the audio chain was implemented as a VST module and tested experimentally. The excitation is provided by music signals played through speakers. Using a weighted moving average reconstructed statistically over time, the response of the room on the entire audible frequency range is obtained. In order to quantify the performance the frequency response obtained is compared with that obtained by using a standard reference method. The mean square error is used as an error metric and shows that more music scrolls, more the frequency response obtained is similar to the reference one for the same listening position. A multi spectral resolution method is used to build, for diffrent frequency bands, the filter response arising from the inversion of the room/speaker frequency response. The resulting dynamically adapting filter has properties similar to those of the human ear, a significant spectral-resolution in lower frequencies, and high time-resolution at high frequencies. The response corrected by the filter system tends approaching to a pure pulse. Techniques explored in the context of this research led to the publication of a scientific article in a peer reviewed journal and one conference paper in which similar methods were used for mining engineering applications

    WOFEX 2021 : 19th annual workshop, Ostrava, 1th September 2021 : proceedings of papers

    Get PDF
    The workshop WOFEX 2021 (PhD workshop of Faculty of Electrical Engineer-ing and Computer Science) was held on September 1st September 2021 at the VSB – Technical University of Ostrava. The workshop offers an opportunity for students to meet and share their research experiences, to discover commonalities in research and studentship, and to foster a collaborative environment for joint problem solving. PhD students are encouraged to attend in order to ensure a broad, unconfined discussion. In that view, this workshop is intended for students and researchers of this faculty offering opportunities to meet new colleagues.Ostrav
    corecore