87 research outputs found

    Applied Visualization in the Neurosciences and the Enhancement of Visualization through Computer Graphics

    Get PDF
    The complexity and size of measured and simulated data in many fields of science is increasing constantly. The technical evolution allows for capturing smaller features and more complex structures in the data. To make this data accessible by the scientists, efficient and specialized visualization techniques are required. Maximum efficiency and value for the user can only be achieved by adapting visualization to the specific application area and the specific requirements of the scientific field. Part I: In the first part of my work, I address the visualization in the neurosciences. The neuroscience tries to understand the human brain; beginning at its smallest parts, up to its global infrastructure. To achieve this ambitious goal, the neuroscience uses a combination of three-dimensional data from a myriad of sources, like MRI, CT, or functional MRI. To handle this diversity of different data types and sources, the neuroscience need specialized and well evaluated visualization techniques. As a start, I will introduce an extensive software called \"OpenWalnut\". It forms the common base for developing and using visualization techniques with our neuroscientific collaborators. Using OpenWalnut, standard and novel visualization approaches are available to the neuroscientific researchers too. Afterwards, I am introducing a very specialized method to illustrate the causal relation of brain areas, which was, prior to that, only representable via abstract graph models. I will finalize the first part of my work with an evaluation of several standard visualization techniques in the context of simulated electrical fields in the brain. The goal of this evaluation was clarify the advantages and disadvantages of the used visualization techniques to the neuroscientific community. We exemplified these, using clinically relevant scenarios. Part II: Besides the data preprocessing, which plays a tremendous role in visualization, the final graphical representation of the data is essential to understand structure and features in the data. The graphical representation of data can be seen as the interface between the data and the human mind. The second part of my work is focused on the improvement of structural and spatial perception of visualization -- the improvement of the interface. Unfortunately, visual improvements using computer graphics methods of the computer game industry is often seen sceptically. In the second part, I will show that such methods can be applied to existing visualization techniques to improve spatiality and to emphasize structural details in the data. I will use a computer graphics paradigm called \"screen space rendering\". Its advantage, amongst others, is its seamless applicability to nearly every visualization technique. I will start with two methods that improve the perception of mesh-like structures on arbitrary surfaces. Those mesh structures represent second-order tensors and are generated by a method named \"TensorMesh\". Afterwards I show a novel approach to optimally shade line and point data renderings. With this technique it is possible for the first time to emphasize local details and global, spatial relations in dense line and point data.In vielen Bereichen der Wissenschaft nimmt die Größe und Komplexität von gemessenen und simulierten Daten zu. Die technische Entwicklung erlaubt das Erfassen immer kleinerer Strukturen und komplexerer Sachverhalte. Um solche Daten dem Menschen zugänglich zu machen, benötigt man effiziente und spezialisierte Visualisierungswerkzeuge. Nur die Anpassung der Visualisierung auf ein Anwendungsgebiet und dessen Anforderungen erlaubt maximale Effizienz und Nutzen für den Anwender. Teil I: Im ersten Teil meiner Arbeit befasse ich mich mit der Visualisierung im Bereich der Neurowissenschaften. Ihr Ziel ist es, das menschliche Gehirn zu begreifen; von seinen kleinsten Teilen bis hin zu seiner Gesamtstruktur. Um dieses ehrgeizige Ziel zu erreichen nutzt die Neurowissenschaft vor allem kombinierte, dreidimensionale Daten aus vielzähligen Quellen, wie MRT, CT oder funktionalem MRT. Um mit dieser Vielfalt umgehen zu können, benötigt man in der Neurowissenschaft vor allem spezialisierte und evaluierte Visualisierungsmethoden. Zunächst stelle ich ein umfangreiches Softwareprojekt namens \"OpenWalnut\" vor. Es bildet die gemeinsame Basis für die Entwicklung und Nutzung von Visualisierungstechniken mit unseren neurowissenschaftlichen Kollaborationspartnern. Auf dieser Basis sind klassische und neu entwickelte Visualisierungen auch für Neurowissenschaftler zugänglich. Anschließend stelle ich ein spezialisiertes Visualisierungsverfahren vor, welches es ermöglicht, den kausalen Zusammenhang zwischen Gehirnarealen zu illustrieren. Das war vorher nur durch abstrakte Graphenmodelle möglich. Den ersten Teil der Arbeit schließe ich mit einer Evaluation verschiedener Standardmethoden unter dem Blickwinkel simulierter elektrischer Felder im Gehirn ab. Das Ziel dieser Evaluation war es, der neurowissenschaftlichen Gemeinde die Vor- und Nachteile bestimmter Techniken zu verdeutlichen und anhand klinisch relevanter Fälle zu erläutern. Teil II: Neben der eigentlichen Datenvorverarbeitung, welche in der Visualisierung eine enorme Rolle spielt, ist die grafische Darstellung essenziell für das Verständnis der Strukturen und Bestandteile in den Daten. Die grafische Repräsentation von Daten bildet die Schnittstelle zum Gehirn des Menschen. Der zweite Teile meiner Arbeit befasst sich mit der Verbesserung der strukturellen und räumlichen Wahrnehmung in Visualisierungsverfahren -- mit der Verbesserung der Schnittstelle. Leider werden viele visuelle Verbesserungen durch Computergrafikmethoden der Spieleindustrie mit Argwohn beäugt. Im zweiten Teil meiner Arbeit werde ich zeigen, dass solche Methoden in der Visualisierung angewendet werden können um den räumlichen Eindruck zu verbessern und Strukturen in den Daten hervorzuheben. Dazu nutze ich ein in der Computergrafik bekanntes Paradigma: das \"Screen Space Rendering\". Dieses Paradigma hat den Vorteil, dass es auf nahezu jede existierende Visualiserungsmethode als Nachbearbeitunsgschritt angewendet werden kann. Zunächst führe ich zwei Methoden ein, die die Wahrnehmung von gitterartigen Strukturen auf beliebigen Oberflächen verbessern. Diese Gitter repräsentieren die Struktur von Tensoren zweiter Ordnung und wurden durch eine Methode namens \"TensorMesh\" erzeugt. Anschließend zeige ich eine neuartige Technik für die optimale Schattierung von Linien und Punktdaten. Mit dieser Technik ist es erstmals möglich sowohl lokale Details als auch globale räumliche Zusammenhänge in dichten Linien- und Punktdaten zu erfassen

    Three-dimensional modeling of natural heterogeneous objects

    Get PDF
    En la medicina y otros campos relacionados cuando se va a estudiar un objeto natural, se toman imágenes de tomografía computarizada a través de varios cortes paralelos. Estos cortes se apilan en datos de volumen y se reconstruyen en modelos computacionales con el fin de estudiar la estructura de dicho objeto. Para construir con éxito modelos tridimensionales es importante la identificación y extracción precisa de todas las regiones que comprenden el objeto heterogéneo natural. Sin embargo, la construcción de modelos tridimensionales por medio del computador a partir de imágenes médicas sigue siendo un problema difícil y plantea dos problemas relacionados con las inexactitudes que surgen de, y son inherentes al proceso de adquisición de datos. El primer problema es la aparición de artefactos que distorsionan el límite entre las regiones. Este es un problema común en la generación de mallas a partir de imágenes médicas, también conocido como efecto de escalón. El segundo problema es la extracción de mallas suaves 3D que se ajustan a los límites de las región que conforman los objetos heterogéneos naturales descritos en las imágenes médicas. Para resolver estos problemas, se propone el método CAREM y el método RAM. El énfasis de esta investigación está puesto en la exactitud y fidelidad a la forma de las regiones necesaria en las aplicaciones biomédicas. Todas las regiones representadas de forma implícita que componen el objeto heterogéneo natural se utilizan para generar mallas adaptadas a los requisitos de los métodos de elementos finitos a través de un enfoque de modelado de ingeniería reversa, por lo tanto, estas regiones se consideran como un todo en lugar de piezas aisladas ensambladas.In medicine and other related fields when a natural object is going to be studied, computed tomography images are taken through several parallel slices. These slices are then stacked in volume data and reconstructed into 3D computer models. In order to successfully build 3D computer models of natural heterogeneous objects, accurate identification and extraction of all regions comprising the natural heterogeneous object is important. However, building 3D computer models of natural heterogeneous objects from medical images is still a challenging problem, and poses two issues related to the inaccuracies which arise from and are inherent to the data acquisition process. The first issue is the appearance of aliasing artifacts in the boundary between regions, a common issue in mesh generation from medical images, also known as stair-stepped artifacts. The second issue is the extraction of smooth 3D multi-region meshes that conform to the region boundaries of natural heterogeneous objects described in the medical images. To solve these issues, the CAREM method and the RAM method are proposed. The emphasis of this research is placed on accuracy and shape fidelity needed for biomedical applications. All implicitly represented regions composing the natural heterogeneous object are used to generate meshes adapted to the requirements of finite element methods through a reverse engineering modeling approach, thus these regions are considered as whole rather than loosely assembled parts.Doctor en IngenieríaDoctorad

    Segmentation of medical images under topological constraints

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.Includes bibliographical references (p. 135-142).Major advances in the field of medical imaging over the past two decades have provided physicians with powerful, non-invasive techniques to probe the structure, function, and pathology of the human body. This increasingly vast and detailed amount of information constitutes a great challenge for the medical imaging community, and requires significant innovations in all aspect of image processing. To achieve accurate and topologically-correct delineations of anatomical structures from medical images is a critical step for many clinical and research applications. In this thesis, we extend the theoretical tools applicable to the segmentation of images under topological control, apply these new concepts to broaden the class of segmentation methodologies, and develop generally applicable and well-founded algorithms to achieve accurate segmentations of medical images under topological constraints. First, we introduce a digital concept that offers more flexibility in controlling the topology of digital segmentations. Second, we design a level set framework that offers a subtle control over the topology of the level set components. Our method constitutes a trade-off between traditional level sets and topology-preserving level sets.(cont.) Third, we develop an algorithm for the retrospective topology correction of 3D digital segmentations. Our method is nested in the theory of Bayesian parameter estimation, and integrates statistical information into the topology correction process. In addition, no assumption is made on the topology of the initial input images. Finally, we propose a genetic algorithm to accurately correct the spherical topology of cortical surfaces. Unlike existing approaches, our method is able to generate several potential topological corrections and to select the maximum-a-posteriori retessellation in a Bayesian framework. Our approach integrates statistical, geometrical, and shape information into the correction process, providing optimal solutions relatively to the MRI intensity profile and the expected curvature.by Florent Ségonne.Ph.D

    DataViewer3D: An Open-Source, Cross-Platform Multi-Modal Neuroimaging Data Visualization Tool

    Get PDF
    Integration and display of results from multiple neuroimaging modalities [e.g. magnetic resonance imaging (MRI), magnetoencephalography, EEG] relies on display of a diverse range of data within a common, defined coordinate frame. DataViewer3D (DV3D) is a multi-modal imaging data visualization tool offering a cross-platform, open-source solution to simultaneous data overlay visualization requirements of imaging studies. While DV3D is primarily a visualization tool, the package allows an analysis approach where results from one imaging modality can guide comparative analysis of another modality in a single coordinate space. DV3D is built on Python, a dynamic object-oriented programming language with support for integration of modular toolkits, and development of cross-platform software for neuroimaging. DV3D harnesses the power of the Visualization Toolkit (VTK) for two-dimensional (2D) and 3D rendering, calling VTK's low level C++ functions from Python. Users interact with data via an intuitive interface that uses Python to bind wxWidgets, which in turn calls the user's operating system dialogs and graphical user interface tools. DV3D currently supports NIfTI-1, ANALYZE™ and DICOM formats for MRI data display (including statistical data overlay). Formats for other data types are supported. The modularity of DV3D and ease of use of Python allows rapid integration of additional format support and user development. DV3D has been tested on Mac OSX, RedHat Linux and Microsoft Windows XP. DV3D is offered for free download with an extensive set of tutorial resources and example data

    Design and development of a VR system for exploration of medical data using haptic rendering and high quality visualization

    Get PDF
    [no abstract

    Generalized Framework and Algorithms for Illustrative Visualization of Time-Varying Data on Unstructured Meshes

    Full text link
    corecore