8,100 research outputs found

    Fingerprints of Random Flows?

    Full text link
    We consider the patterns formed by small rod-like objects advected by a random flow in two dimensions. An exact solution indicates that their direction field is non-singular. However, we find from simulations that the direction field of the rods does appear to exhibit singularities. First, ` scar lines' emerge where the rods abruptly change direction by π\pi. Later, these scar lines become so narrow that they ` heal over' and disappear, but their ends remain as point singularities, which are of the same type as those seen in fingerprints. We give a theoretical explanation for these observations.Comment: 21 pages, 11 figure

    A Theoretical Framework for Lagrangian Descriptors

    Get PDF
    This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigourous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for nn-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as nn-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors

    Methodological Fundamentalism: or why Batterman’s Different Notions of ‘Fundamentalism’ may not make a Difference

    Get PDF
    I argue that the distinctions Robert Batterman (2004) presents between ‘epistemically fundamental’ versus ‘ontologically fundamental’ theoretical approaches can be subsumed by methodologically fundamental procedures. I characterize precisely what is meant by a methodologically fundamental procedure, which involves, among other things, the use of multilinear graded algebras in a theory’s formalism. For example, one such class of algebras I discuss are the Clifford (or Geometric) algebras. Aside from their being touted by many as a “unified mathematical language for physics,” (Hestenes (1984, 1986) Lasenby, et. al. (2000)) Finkelstein (2001, 2004) and others have demonstrated that the techniques of multilinear algebraic ‘expansion and contraction’ exhibit a robust regularizablilty. That is to say, such regularization has been demonstrated to remove singularities, which would otherwise appear in standard field-theoretic, mathematical characterizations of a physical theory. I claim that the existence of such methodologically fundamental procedures calls into question one of Batterman’s central points, that “our explanatory physical practice demands that we appeal essentially to (infinite) idealizations” (2003, 7) exhibited, for example, by singularities in the case of modeling critical phenomena, like fluid droplet formation. By way of counterexample, in the field of computational fluid dynamics (CFD), I discuss the work of Mann & Rockwood (2003) and Gerik Scheuermann, (2002). In the concluding section, I sketch a methodologically fundamental procedure potentially applicable to more general classes of critical phenomena appearing in fluid dynamics
    • 

    corecore