10 research outputs found

    Dynamics, Electromyography and Vibroarthrography as Non-Invasive Diagnostic Tools: Investigation of the Patellofemoral Joint

    Get PDF
    The knee joint plays an essential role in the human musculoskeletal system. It has evolved to withstand extreme loading conditions, while providing almost frictionless joint movement. However, its performance may be disrupted by disease, anatomical deformities, soft tissue imbalance or injury. Knee disorders are often puzzling, and accurate diagnosis may be challenging. Current evaluation approach is usually limited to a detailed interview with the patient, careful physical examination and radiographic imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissue conditions. More advanced imaging tools such as MRI or CT are available, but expensive, time consuming and can be used only under static conditions. Moreover, due to limited resolution the radiographic techniques cannot reveal early stage arthritis. The arthroscopy is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. Therefore, the motivation for this work was to combine three scientific methods to provide a comprehensive, non-invasive evaluation tool bringing insight into the in vivo, dynamic conditions of the knee joint and articular cartilage degeneration. Electromyography and inverse dynamics were employed to independently determine the forces present in several muscles spanning the knee joint. Though both methods have certain limitations, the current work demonstrates how the use of these two methods concurrently enhances the biomechanical analysis of the knee joint conditions, especially the performance of the extensor mechanism. The kinetic analysis was performed for 12 TKA, 4 healthy individuals in advanced age and 4 young subjects. Several differences in the knee biomechanics were found between the three groups, identifying age-related and post-operative decrease in the extensor mechanism efficiency, explaining the increased effort of performing everyday activities experienced by the elderly and TKA subjects. The concept of using accelerometers to assess the cartilage degeneration has been proven based on a group of 23 subjects with non-symptomatic knees and 52 patients suffering from knee arthritis. Very high success (96.2%) of pattern classification obtained in this work clearly demonstrates that vibroarthrography is a promising, non-invasive and low-cost technique offering screening capabilities

    Biomaterial-Mediated Reprogramming of the Wound Interface to Enhance Meniscal Repair

    Get PDF
    Endogenous repair of fibrous connective tissues is limited, and there exist few successful strategies to improve healing after injury. As such, new methods that advance repair by enhancing cell migration to the wound interface, extracellular matrix (ECM) production, and tissue integration would represent a marked clinical advance. Using the adult meniscus as a test platform, we hypothesized that ECM density and stiffness increase throughout tissue maturation, and that these age-related changes present biophysical barriers to interstitial cell migration during wound healing. We further posited that modulating the matrix could remove these impediments, enabling endogenous cells to reach the injury site. To test our hypotheses, we compared the microenvironment of fetal and adult meniscal ECM via atomic force microscopy (AFM) indentation and second harmonic generation (SHG) imaging of the collagenous matrix. We also explored interstitial cell mobility through fetal and adult native tissue environments using a three-dimensional ex vivo system. We further investigated strategies that might expedite cell migration, including enzymatic degradation of the ECM with collagenase to reduce matrix stiffness and increase porosity. To restrict these biological manipulations to the wound interface, we fabricated a delivery system in which selected biofactors were stored inside composite electrospun nanofibrous scaffolds and released upon hydration. The ability for bioactive scaffolds to enhance the cellularity and integration of meniscal injuries was evaluated in vivo using tissue explants in a subcutaneous implantation model, as well as an orthotopic meniscal injury model. Our findings suggest that matrix stiffness, density, and organization increase with meniscal development at the expense of cell mobility. Our results also indicate that partial digestion of the wound interface with collagenase improves repair by creating a more compliant and porous microenvironment that facilitates cell migration. Furthermore, when scaffolds containing collagenase-releasing fibers were placed inside meniscal defects, enzymatic digestion was localized and resulted in improved cellular colonization and closure of the wound site, similar to treatment with aqueous collagenase. This innovative approach of targeted delivery may aid the many patients that exhibit meniscal tears by promoting integrative repair, thereby circumventing the pathologic consequences of partial meniscus removal, and may find widespread application in the treatment of injuries to a variety of dense connective tissues

    Volume 22, issue 5

    Get PDF
    The mission of CJS is to contribute to the effective continuing medical education of Canadian surgical specialists, using innovative techniques when feasible, and to provide surgeons with an effective vehicle for the dissemination of observations in the areas of clinical and basic science research. Visit the journal website at http://canjsurg.ca/ for more.https://ir.lib.uwo.ca/cjs/1163/thumbnail.jp
    corecore