4,183 research outputs found

    Procedural visualization of knitwear and woven cloth

    Get PDF
    Cataloged from PDF version of article.In this paper, a procedural method for the visualization of knitted and woven fabrics is presented. The proposed method is compatible with a mass-spring model and makes use of the regular warp-weft structure of the cloth. The visualization parameters for the loops and threads are easily mapped to the animated mass-spring model. The simulation idea underlying both knitted and woven fabrics is similar as we represent both structures in 3D. As the proposed method is simple and practical, we can achieve near real-time rendering performance with good visual quality. (C) 2007 Elsevier Ltd. All rights reserved

    Wearable performance

    Get PDF
    This is the post-print version of the article. The official published version can be accessed from the link below - Copyright @ 2009 Taylor & FrancisWearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment. Wearable computing devices worn on the body provide the potential for digital interaction in the world. A new stage of computing technology at the beginning of the 21st Century links the personal and the pervasive through mobile wearables. The convergence between the miniaturisation of microchips (nanotechnology), intelligent textile or interfacial materials production, advances in biotechnology and the growth of wireless, ubiquitous computing emphasises not only mobility but integration into clothing or the human body. In artistic contexts one expects such integrated wearable devices to have the two-way function of interface instruments (e.g. sensor data acquisition and exchange) worn for particular purposes, either for communication with the environment or various aesthetic and compositional expressions. 'Wearable performance' briefly surveys the context for wearables in the performance arts and distinguishes display and performative/interfacial garments. It then focuses on the authors' experiments with 'design in motion' and digital performance, examining prototyping at the DAP-Lab which involves transdisciplinary convergences between fashion and dance, interactive system architecture, electronic textiles, wearable technologies and digital animation. The concept of an 'evolving' garment design that is materialised (mobilised) in live performance between partners originates from DAP Lab's work with telepresence and distributed media addressing the 'connective tissues' and 'wearabilities' of projected bodies through a study of shared embodiment and perception/proprioception in the wearer (tactile sensory processing). Such notions of wearability are applied both to the immediate sensory processing on the performer's body and to the processing of the responsive, animate environment

    A 3D garment design and simulation system

    Get PDF
    Cataloged from PDF version of article.In this thesis study, a 3D graphics environment for virtual garment design and simulation is presented. The proposed system enables the three dimensional construction of a garment from its two dimensional cloth panels, for which the underlying structure is a mass-spring model. Construction of the garment is performed through cutting, boundary smoothing , seaming and scaling. Afterwards, it is possible to do fitting on virtual mannequins like in the real life as if in a tailor’s workshop. The behavior of cloth under different environmental conditions is implemented applying a physically-based approach. As well as the simulation of the draping of garments, efficient and realistic visualization of garments is an important issue in cloth modelling. There are various material types and reflectance properties for fabrics. We have implemented a number of material and rendering options such as knitwear, woven cloth and standard shading methods such as Gouraud shading. Performance results of the system are presented at the end.Durupınar, FundaM.S

    Modelling and Visualisation of the Optical Properties of Cloth

    Get PDF
    Cloth and garment visualisations are widely used in fashion and interior design, entertaining, automotive and nautical industry and are indispensable elements of visual communication. Modern appearance models attempt to offer a complete solution for the visualisation of complex cloth properties. In the review part of the chapter, advanced methods that enable visualisation at micron resolution, methods used in three-dimensional (3D) visualisation workflow and methods used for research purposes are presented. Within the review, those methods offering a comprehensive approach and experiments on explicit clothes attributes that present specific optical phenomenon are analysed. The review of appearance models includes surface and image-based models, volumetric and explicit models. Each group is presented with the representative authors’ research group and the application and limitations of the methods. In the final part of the chapter, the visualisation of cloth specularity and porosity with an uneven surface is studied. The study and visualisation was performed using image data obtained with photography. The acquisition of structure information on a large scale namely enables the recording of structure irregularities that are very common on historical textiles, laces and also on artistic and experimental pieces of cloth. The contribution ends with the presentation of cloth visualised with the use of specular and alpha maps, which is the result of the image processing workflow

    Mechanics-Aware Modeling of Cloth Appearance

    Get PDF

    Crafting the Composite Garment: The role of hand weaving in digital creation

    Get PDF
    There is a growing body of practice-led textile research, focused on how digital technologies can inform new design and production strategies that challenge and extend the field. To date, this research has emphasized a traditional linear transition between hand and digital production; with hand production preceding digital as a means of acquiring the material and process knowledge required to negotiate technologies and conceptualize designs. This paper focuses on current Doctoral research into the design and prototyping of 3D woven or 'composite' garments and how the re-learning, or reinterpreting, of hand weaving techniques in a digital Jacquard format relies heavily on experiential knowledge of craft weaving skills. Drawing parallels between hand weaving and computer programming, that extend beyond their shared binary (pixel-based) language, the paper discusses how the machine-mediated experience of hand weaving can prime the weaver to ‘think digitally’ and make the transition to digital production. In a process where the weaver acts simultaneously as designer, constructor and programmer, the research explores the inspiring, but often indefinable space between craft and digital technology by challenging the notion that 'the relationship between hand, eye and material’ naturally precedes the use of computing (Harris 2012: 93). This is achieved through the development of an iterative working methodology that encompasses a cycle of transitional development, where hand weaving and digital processes take place in tandem, and techniques and skills are reinterpreted to exploit the advantages and constraints of each construction method. It is argued that the approach challenges the codes and conventions of computer programming, weaving and fashion design to offer a more sustainable clothing solution

    Exploration of Wood Waste Materials for Fashion Products

    Get PDF
    Industrial and domestic production processes generally result in the disposal or what we know as waste. Based on the activities carried out, wood waste consists of several types and characteristics. The kind of wood waste used is sawdust. Therefore, the author raises the theme of exploration of wood waste into new materials for fashion products. This study aims to increase the functional and economic value of wood sawdust into a new material that has high economic value. In this study, the authors explored wood waste into new materials for fashion products using the assembly method. The raft design technique used is the non-woven technique. This technique has processes such as being compressed, heated, bonded, and chemically so that it can become new material. The resulting material is a material that resembles cowhide. Key words: exploration, wood waste,  material, fashion , products. Publication date:September 30th 2020 DOI: 10.7176/ADS/85-0

    Evolutionary Clustering in Indonesian Ethnic Textile Motifs \ud

    Get PDF
    The wide varieties of Indonesian textiles could reflect the varsity that has been living with the diversity of Indonesian ethnic groups. Meme as an evolutionary modeling technique promises some conjectures to capture the innovative process of the cultural objects production in the particular collective patterns acquainted can be regarded as fitness in the large evolutionary landscape of cultural life. We have presented the correlations between memeplexes that is transformed into distances has generated the phylomemetic tree, both among some samples from Indonesian textile handicrafts and batik, the designs that have been living through generations with Javanese people, the largest ethnic group in Indonesian archipelago. The memeplexes is extracted from the geometrical shape, i.e.: fractal dimensions and the histogram analysis of the employed colorization. We draw some interesting findings from the tree and open the future anthropological development that might catch the attention further observation

    Multi-Color Diffusion Simulation of Dye Over Folded Fabrics

    Get PDF
    Creating a unique dyed shirt requires accurately simulating a fabric model, implementing the ability to fold the fabric, encoding the process of dye diffusion through the fabric, and allowing for different color channels of dye to mix. These goals require an adherence to the physical properties and laws that govern the process of diffusion and a suitable representational model that this diffusion is conducted on and through. This paper presents a model for the representation of fabric that is comprised of two layers woven together in a weave pattern. Using Fick’s Second Law of Diffusion and properties of the fabric and threads, we calculate the rate of diffusion for each cell of the fabric. This calculation is done over each color channel to allow for the full spectrum of dye colors to be realized. Using a relationship matrix, the fabric can be folded over itself, and the dye will diffuse over this fold into the layer on the other side. Most of the parameters involved in defining the type of fabric can be modified to allow for a large range of visual expression in the fabric. The results support the effectiveness and veracity of the model
    • 

    corecore