2,445 research outputs found

    Computing wildfire behaviour metrics from CFD simulation data

    Get PDF
    In this article, we demonstrate a new post-processing methodology which can be used to analyse CFD wildfire simulation outputs in a model-independent manner. CFD models produce a great deal of quantitative output but require additional post-processing to calculate commonly used wildfire behaviour metrics. Such post-processing has so far been model specific. Our method takes advantage of the 3D renderings that are a common output from such models and provides a means of calculating important fire metrics such as rate of spread and flame height using image processing techniques. This approach can be applied similarly to different models and to real world fire behaviour datasets, thus providing a new framework for model validation. Furthermore, obtained information is not limited to average values over the complete domain but spatially and temporally explicit metric distributions are provided. This feature supports posterior statistical analyses, ultimately contributing to more detailed and rigorous fire behaviour studies.Peer ReviewedPostprint (published version

    Coupled atmosphere-wildland fire modeling with WRF-Fire

    Full text link
    We describe the physical model, numerical algorithms, and software structure of WRF-Fire. WRF-Fire consists of a fire-spread model, implemented by the level-set method, coupled with the Weather Research and Forecasting model. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. The level-set method allows submesh representation of the burning region and flexible implementation of various ignition modes. WRF-Fire is distributed as a part of WRF and it uses the WRF parallel infrastructure for parallel computing.Comment: Version 3.3, 41 pages, 2 tables, 12 figures. As published in Discussions, under review for Geoscientific Model Developmen

    Assimilation of Perimeter Data and Coupling with Fuel Moisture in a Wildland Fire - Atmosphere DDDAS

    Get PDF
    We present a methodology to change the state of the Weather Research Forecasting (WRF) model coupled with the fire spread code SFIRE, based on Rothermel's formula and the level set method, and with a fuel moisture model. The fire perimeter in the model changes in response to data while the model is running. However, the atmosphere state takes time to develop in response to the forcing by the heat flux from the fire. Therefore, an artificial fire history is created from an earlier fire perimeter to the new perimeter, and replayed with the proper heat fluxes to allow the atmosphere state to adjust. The method is an extension of an earlier method to start the coupled fire model from a developed fire perimeter rather than an ignition point. The level set method is also used to identify parameters of the simulation, such as the spread rate and the fuel moisture. The coupled model is available from openwfm.org, and it extends the WRF-Fire code in WRF release.Comment: ICCS 2012, 10 pages; corrected some DOI typesetting in the reference

    AEGIS App: Wildfire Information Management for Windows Phone Devices

    Get PDF
    AbstractNovel technological advances in mobile devices and applications can be exploited in wildfire confrontation, enabling end-users to easily conduct several everyday tasks, such as access to data and information, sharing of intelligence and coordination of personnel and vehicles. This work describes an innovative mobile application for wildfire information management that operates on Windows Phone devices and acts as a complementary tool to the web-based version of the AEGIS platform for wildfire prevention and management. Several tasks can be accomplished from the AEGIS App, such as routing, spatial search for closest facilities and firefighting support infrastructures, access to weather data and visualization of fire management data (water sources, gas refill stations, evacuation sites etc.). An innovative feature of AEGIS App is the support of these tasks by a digital assistant for artificial intelligence named Cortana (developed by Microsoft for Windows Phone devices), that allows information utilization through voice commands. The application is to be used by firefighting personnel in Greece and is potentially expected to contribute towards a more sophisticated transferring of information and knowledge between wildfire confrontation operation centers and firefighting units in the field

    A wildland fire model with data assimilation

    Full text link
    A wildfire model is formulated based on balance equations for energy and fuel, where the fuel loss due to combustion corresponds to the fuel reaction rate. The resulting coupled partial differential equations have coefficients that can be approximated from prior measurements of wildfires. An ensemble Kalman filter technique with regularization is then used to assimilate temperatures measured at selected points into running wildfire simulations. The assimilation technique is able to modify the simulations to track the measurements correctly even if the simulations were started with an erroneous ignition location that is quite far away from the correct one.Comment: 35 pages, 12 figures; minor revision January 2008. Original version available from http://www-math.cudenver.edu/ccm/report
    corecore