2,090 research outputs found

    SIRENA: A CAD environment for behavioural modelling and simulation of VLSI cellular neural network chips

    Get PDF
    This paper presents SIRENA, a CAD environment for the simulation and modelling of mixed-signal VLSI parallel processing chips based on cellular neural networks. SIRENA includes capabilities for: (a) the description of nominal and non-ideal operation of CNN analogue circuitry at the behavioural level; (b) performing realistic simulations of the transient evolution of physical CNNs including deviations due to second-order effects of the hardware; and, (c) evaluating sensitivity figures, and realize noise and Monte Carlo simulations in the time domain. These capabilities portray SIRENA as better suited for CNN chip development than algorithmic simulation packages (such as OpenSimulator, Sesame) or conventional neural networks simulators (RCS, GENESIS, SFINX), which are not oriented to the evaluation of hardware non-idealities. As compared to conventional electrical simulators (such as HSPICE or ELDO-FAS), SIRENA provides easier modelling of the hardware parasitics, a significant reduction in computation time, and similar accuracy levels. Consequently, iteration during the design procedure becomes possible, supporting decision making regarding design strategies and dimensioning. SIRENA has been developed using object-oriented programming techniques in C, and currently runs under the UNIX operating system and X-Windows framework. It employs a dedicated high-level hardware description language: DECEL, fitted to the description of non-idealities arising in CNN hardware. This language has been developed aiming generality, in the sense of making no restrictions on the network models that can be implemented. SIRENA is highly modular and composed of independent tools. This simplifies future expansions and improvements.Comisión Interministerial de Ciencia y Tecnología TIC96-1392-C02-0

    DANNA2: Dynamic Adaptive Neural Network Arrays

    Get PDF
    Traditional Von Neumann architectures have been at the center of computing for decades thanks in part to Moore\u27s Law and Dennard Scaling. However, MOSFET scaling is rapidly approaching its physical limits spelling the end of an era. This is causing researchers to examine alternative solutions. Neuromorphic computing is a paradigm shift which may offer increased capabilities and efficiency by borrowing concepts from biology and incorporating them into an alternative computing platform.The TENNLab group explores these architectures and the associated challenges. The group currently has a mature hardware platform referred to as Dynamic Adaptive Neural Network Arrays (DANNA). DANNA is a digital discrete spiking neural network architecture with software, FPGA, and VLSI implementations. This work introduces a successor architecture built on the lessons learned from prior models. The DANNA2 model offers an order of magnitude improvement over DANNA in both simulation speed and hardware clock frequency while expanding functionality and improving effective density

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    3D-MRI Obstruction and Visualization of Pharyngeal Airway Tract using Open Source Seeded Technique

    Get PDF
    Abstract: Obstructive Sleep Apnea(OSA) is breathing disorder syndrome in which the airway tract pauses during sleep due to collapse of pharyngeal airway. It is occurred at the sleep time, with fourth dimensional high resolution in airway tract Obstruction in children and adults with OSA. Here, we the operator places the seeds that includes the Oesopharyngeal air tract and found out a threshold for the first frame in order to determine the affected tissues which blocks the patients pharyngeal tract. In this automated segmentation method it shows the process of MRI studies of the pharyngeal air pathway and enable diagnose of obstructive tissues with the collapse tissues. Region growing method results well in Dice Coefficients compared with manual segmentation. It automatically detects 90% of collapse tissues. This approach leads to segment the pharyngeal pathway correctly. It uses long MRI scans in order to diagnosis the collapsed tissues with graph, accurate details and coefficients in a short span of duration

    Nonlinear Circuit Analysis via Perturbation Methods and Hardware Prototyping

    Get PDF
    Nonlinear signal processing is necessary in many emerging applications where form factor and power are at a premium. In order to make such complex computation feasible under these constraints, it is necessary to implement the signal processors as analog circuits. Since analog circuit design is largely based on a linear systems perspective, new tools are being introduced to circuit designers that allow them to understand and exploit circuit nonlinearity for useful processing. This paper discusses two such tools, which represent nonlinear circuit behavior in a graphical way, making it easy to develop a qualitative appreciation for the circuits under study
    corecore