726 research outputs found

    A Kohonen SOM architecture for intrusion detection on in-vehicle communication networks

    Get PDF
    The diffusion of connected devices in modern vehicles involves a lack in security of the in-vehicle communication networks such as the controller area network (CAN) bus. The CAN bus protocol does not provide security systems to counter cyber and physical attacks. Thus, an intrusion-detection system to identify attacks and anomalies on the CAN bus is desirable. In the present work, we propose a distance-based intrusion-detection network aimed at identifying attack messages injected on a CAN bus using a Kohonen self-organizing map (SOM) network. It is a power classifier that can be trained both as supervised and unsupervised learning. SOM found broad application in security issues, but was never performed on in-vehicle communication networks. We performed two approaches, first using a supervised X-Y fused Kohonen network (XYF) and then combining the XYF network with a K-means clustering algorithm (XYF-K) in order to improve the efficiency of the network. The models were tested on an open source dataset concerning data messages sent on a CAN bus 2.0B and containing large traffic volume with a low number of features and more than 2000 different attack types, sent totally at random. Despite the complex structure of the CAN bus dataset, the proposed architectures showed a high performance in the accuracy of the detection of attack messages

    Creating an Explainable Intrusion Detection System Using Self Organizing Maps

    Full text link
    Modern Artificial Intelligence (AI) enabled Intrusion Detection Systems (IDS) are complex black boxes. This means that a security analyst will have little to no explanation or clarification on why an IDS model made a particular prediction. A potential solution to this problem is to research and develop Explainable Intrusion Detection Systems (X-IDS) based on current capabilities in Explainable Artificial Intelligence (XAI). In this paper, we create a Self Organizing Maps (SOMs) based X-IDS system that is capable of producing explanatory visualizations. We leverage SOM's explainability to create both global and local explanations. An analyst can use global explanations to get a general idea of how a particular IDS model computes predictions. Local explanations are generated for individual datapoints to explain why a certain prediction value was computed. Furthermore, our SOM based X-IDS was evaluated on both explanation generation and traditional accuracy tests using the NSL-KDD and the CIC-IDS-2017 datasets

    On Efficiency of Selected Machine Learning Algorithms for Intrusion Detection in Software Defined Networks

    Get PDF
    We propose a concept of using Software Defined Network (SDN) technology and machine learning algorithms for monitoring and detection of malicious activities in the SDN data plane. The statistics and features of network traffic are generated by the native mechanisms of SDN technology. In order to conduct tests and a verification of the concept, it was necessary to obtain a set of network workload test data. We present virtual environment which enables generation of the SDN network traffic. The article examines the efficiency of selected  machine learning methods: Self Organizing Maps and Learning Vector Quantization and their enhanced versions. The results are compared with other SDN-based IDS

    Gaining deep knowledge of Android malware families through dimensionality reduction techniques

    Get PDF
    [Abstract] This research proposes the analysis and subsequent characterisation of Android malware families by means of low dimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming from the Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reduction techniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum Likelihood Hebbian Learning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results obtained enable a clear visual analysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Android malware families. Interesting conclusions are obtained from the real-life data set under analysis

    Explainable Intrusion Detection Systems using white box techniques

    Get PDF
    Artificial Intelligence (AI) has found increasing application in various domains, revolutionizing problem-solving and data analysis. However, in decision-sensitive areas like Intrusion Detection Systems (IDS), trust and reliability are vital, posing challenges for traditional black box AI systems. These black box IDS, while accurate, lack transparency, making it difficult to understand the reasons behind their decisions. This dissertation explores the concept of eXplainable Intrusion Detection Systems (X-IDS), addressing the issue of trust in X-IDS. It explores the limitations of common black box IDS and the complexities of explainability methods, leading to the fundamental question of trusting explanations generated by black box explainer modules. To address these challenges, this dissertation presents the concept of white box explanations, which are innately explainable. While white box algorithms are typically simpler and more interpretable, they often sacrifice accuracy. However, this work utilized white box Competitive Learning (CL), which can achieve competitive accuracy in comparison to black box IDS. We introduce Rule Extraction (RE) as another white box technique that can be applied to explain black box IDS. It involves training decision trees on the inputs, weights, and outputs of black box models, resulting in human-readable rulesets that serve as global model explanations. These white box techniques offer the benefits of accuracy and trustworthiness, which are challenging to achieve simultaneously. This work aims to address gaps in the existing literature, including the need for highly accurate white box IDS, a methodology for understanding explanations, small testing datasets, and comparisons between white box and black box models. To achieve these goals, the study employs CL and eclectic RE algorithms. CL models offer innate explainability and high accuracy in IDS applications, while eclectic RE enhances trustworthiness. The contributions of this dissertation include a novel X-IDS architecture featuring Self-Organizing Map (SOM) models that adhere to DARPA’s guidelines for explainable systems, an extended X-IDS architecture incorporating three CL-based algorithms, and a hybrid X-IDS architecture combining a Deep Neural Network (DNN) predictor with a white box eclectic RE explainer. These architectures create more explainable, trustworthy, and accurate X-IDS systems, paving the way for enhanced AI solutions in decision-sensitive domains

    Gaining deep knowledge of Android malware families through dimensionality reduction techniques

    Get PDF
    This research proposes the analysis and subsequent characterisation of Android malware families by means of low dimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming from the Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reduction techniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum Likelihood Hebbian Learning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results obtained enable a clear visual analysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Android malware families. Interesting conclusions are obtained from the real-life data set under analysis

    An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities

    Get PDF
    Abnormal network traffic analysis through Intrusion Detection Systems (IDSs) and visualization techniques has considerably become an important research topic to protect computer networks from intruders. It has been still challenging to design an accurate and a robust IDS with visualization capabilities to discover security threats due to the high volume of network traffic. This research work introduces and describes a novel anomaly-based intrusion detection system in presence of long-range independence data called benign outliers, using a neural projection architecture by a modified Self-Organizing Map (SOM) to not only detect attacks and anomalies accurately, but also provide visualized information and insights to end users. The proposed approach enables better analysis by merging the large amount of network traffic into an easy-to-understand 2D format and a simple user interaction. To show the performance and validate the proposed visualization-based IDS, it has been trained and tested over synthetic and real benchmarking datasets (NSL-KDD, UNSW-NB15, AAGM and VPN-nonVPN) that are widely applied in this domain. The results of the conducted experimental study confirm the advantages and effectiveness of the proposed approach

    Neural visualization of network traffic data for intrusion detection

    Get PDF
    This study introduces and describes a novel intrusion detection system (IDS) called MOVCIDS (mobile visualization connectionist IDS). This system applies neural projection architectures to detect anomalous situations taking place in a computer network. By its advanced visualization facilities, the proposed IDS allows providing an overview of the network traffic as well as identifying anomalous situations tackled by computer networks, responding to the challenges presented by volume, dynamics and diversity of the traffic, including novel (0-day) attacks. MOVCIDS provides a novel point of view in the field of IDSs by enabling the most interesting projections (based on the fourth order statistics; the kurtosis index) of a massive traffic dataset to be extracted. These projections are then depicted through a functional and mobile visualization interface, providing visual information of the internal structure of the traffic data. The interface makes MOVCIDS accessible from any mobile device to give more accessibility to network administrators, enabling continuous visualization, monitoring and supervision of computer networks. Additionally, a novel testing technique has been developed to evaluate MOVCIDS and other IDSs employing numerical datasets. To show the performance and validate the proposed IDS, it has been tested in different real domains containing several attacks and anomalous situations. In addition, the importance of the temporal dimension on intrusion detection, and the ability of this IDS to process it, are emphasized in this workJunta de Castilla and Leon project BU006A08, Business intelligence for production within the framework of the Instituto Tecnologico de Cas-tilla y Leon (ITCL) and the Agencia de Desarrollo Empresarial (ADE), and the Spanish Ministry of Education and Innovation project CIT-020000-2008-2. The authors would also like to thank the vehicle interior manufacturer, Grupo Antolin Ingenieria S. A., within the framework of the project MAGNO2008-1028-CENIT Project funded by the Spanish Government
    corecore