7,488 research outputs found

    Sensornet checkpointing: enabling repeatability in testbeds and realism in simulations

    Get PDF
    When developing sensor network applications, the shift from simulation to testbed causes application failures, resulting in additional time-consuming iterations between simulation and testbed. We propose transferring sensor network checkpoints between simulation and testbed to reduce the gap between simulation and testbed. Sensornet checkpointing combines the best of both simulation and testbeds: the nonintrusiveness and repeatability of simulation, and the realism of testbeds

    Fault Location in Power Distribution Systems via Deep Graph Convolutional Networks

    Full text link
    This paper develops a novel graph convolutional network (GCN) framework for fault location in power distribution networks. The proposed approach integrates multiple measurements at different buses while taking system topology into account. The effectiveness of the GCN model is corroborated by the IEEE 123 bus benchmark system. Simulation results show that the GCN model significantly outperforms other widely-used machine learning schemes with very high fault location accuracy. In addition, the proposed approach is robust to measurement noise and data loss errors. Data visualization results of two competing neural networks are presented to explore the mechanism of GCN's superior performance. A data augmentation procedure is proposed to increase the robustness of the model under various levels of noise and data loss errors. Further experiments show that the model can adapt to topology changes of distribution networks and perform well with a limited number of measured buses.Comment: Accepcted by IEEE Journal on Selected Areas in Communicatio

    Internal combustion engine sensor network analysis using graph modeling

    Get PDF
    In recent years there has been a rapid development in technologies for smart monitoring applied to many different areas (e.g. building automation, photovoltaic systems, etc.). An intelligent monitoring system employs multiple sensors distributed within a network to extract useful information for decision-making. The management and the analysis of the raw data derived from the sensor network includes a number of specific challenges still unresolved, related to the different communication standards, the heterogeneous structure and the huge volume of data. In this paper we propose to apply a method based on complex network theory, to evaluate the performance of an Internal Combustion Engine. Data are gathered from the OBD sensor subset and from the emission analyzer. The method provides for the graph modeling of the sensor network, where the nodes are represented by the sensors and the edge are evaluated with non-linear statistical correlation functions applied to the time series pairs. The resulting functional graph is then analyzed with the topological metrics of the network, to define characteristic proprieties representing useful indicator for the maintenance and diagnosis
    • …
    corecore