20,622 research outputs found

    Integration of a big data emerging on large sparse simulation and its application on green computing platform

    Get PDF
    The process of analyzing large data and verifying a big data set are a challenge for understanding the fundamental concept behind it. Many big data analysis techniques suffer from the poor scalability, variation inequality, instability, lower convergence, and weak accuracy of the large-scale numerical algorithms. Due to these limitations, a wider opportunity for numerical analysts to develop the efficiency and novel parallel algorithms has emerged. Big data analytics plays an important role in the field of sciences and engineering for extracting patterns, trends, actionable information from large sets of data and improving strategies for making a decision. A large data set consists of a large-scale data collection via sensor network, transformation from signal to digital images, high resolution of a sensing system, industry forecasts, existing customer records to predict trends and prepare for new demand. This paper proposes three types of big data analytics in accordance to the analytics requirement involving a large-scale numerical simulation and mathematical modeling for solving a complex problem. First is a big data analytics for theory and fundamental of nanotechnology numerical simulation. Second, big data analytics for enhancing the digital images in 3D visualization, performance analysis of embedded system based on the large sparse data sets generated by the device. Lastly, extraction of patterns from the electroencephalogram (EEG) data set for detecting the horizontal-vertical eye movements. Thus, the process of examining a big data analytics is to investigate the behavior of hidden patterns, unknown correlations, identify anomalies, and discover structure inside unstructured data and extracting the essence, trend prediction, multi-dimensional visualization and real-time observation using the mathematical model. Parallel algorithms, mesh generation, domain-function decomposition approaches, inter-node communication design, mapping the subdomain, numerical analysis and parallel performance evaluations (PPE) are the processes of the big data analytics implementation. The superior of parallel numerical methods such as AGE, Brian and IADE were proven for solving a large sparse model on green computing by utilizing the obsolete computers, the old generation servers and outdated hardware, a distributed virtual memory and multi-processors. The integration of low-cost communication of message passing software and green computing platform is capable of increasing the PPE up to 60% when compared to the limited memory of a single processor. As a conclusion, large-scale numerical algorithms with great performance in scalability, equality, stability, convergence, and accuracy are important features in analyzing big data simulation

    Integration of a big data emerging on large sparse simulation and its application on green computing platform

    Get PDF
    The process of analyzing large data and verifying a big data set are a challenge for understanding the fundamental concept behind it. Many big data analysis techniques suffer from the poor scalability, variation inequality, instability, lower convergence, and weak accuracy of the large-scale numerical algorithms. Due to these limitations, a wider opportunity for numerical analysts to develop the efficiency and novel parallel algorithms has emerged. Big data analytics plays an important role in the field of sciences and engineering for extracting patterns, trends, actionable information from large sets of data and improving strategies for making a decision. A large data set consists of a large-scale data collection via sensor network, transformation from signal to digital images, high resolution of a sensing system, industry forecasts, existing customer records to predict trends and prepare for new demand. This paper proposes three types of big data analytics in accordance to the analytics requirement involving a large-scale numerical simulation and mathematical modeling for solving a complex problem. First is a big data analytics for theory and fundamental of nanotechnology numerical simulation. Second, big data analytics for enhancing the digital images in 3D visualization, performance analysis of embedded system based on the large sparse data sets generated by the device. Lastly, extraction of patterns from the electroencephalogram (EEG) data set for detecting the horizontal-vertical eye movements. Thus, the process of examining a big data analytics is to investigate the behavior of hidden patterns, unknown correlations, identify anomalies, and discover structure inside unstructured data and extracting the essence, trend prediction, multi-dimensional visualization and real-time observation using the mathematical model. Parallel algorithms, mesh generation, domain-function decomposition approaches, inter-node communication design, mapping the subdomain, numerical analysis and parallel performance evaluations (PPE) are the processes of the big data analytics implementation. The superior of parallel numerical methods such as AGE, Brian and IADE were proven for solving a large sparse model on green computing by utilizing the obsolete computers, the old generation servers and outdated hardware, a distributed virtual memory and multi-processors. The integration of low-cost communication of message passing software and green computing platform is capable of increasing the PPE up to 60% when compared to the limited memory of a single processor. As a conclusion, large-scale numerical algorithms with great performance in scalability, equality, stability, convergence, and accuracy are important features in analyzing big data simulation

    Social media analytics: a survey of techniques, tools and platforms

    Get PDF
    This paper is written for (social science) researchers seeking to analyze the wealth of social media now available. It presents a comprehensive review of software tools for social networking media, wikis, really simple syndication feeds, blogs, newsgroups, chat and news feeds. For completeness, it also includes introductions to social media scraping, storage, data cleaning and sentiment analysis. Although principally a review, the paper also provides a methodology and a critique of social media tools. Analyzing social media, in particular Twitter feeds for sentiment analysis, has become a major research and business activity due to the availability of web-based application programming interfaces (APIs) provided by Twitter, Facebook and News services. This has led to an ‘explosion’ of data services, software tools for scraping and analysis and social media analytics platforms. It is also a research area undergoing rapid change and evolution due to commercial pressures and the potential for using social media data for computational (social science) research. Using a simple taxonomy, this paper provides a review of leading software tools and how to use them to scrape, cleanse and analyze the spectrum of social media. In addition, it discussed the requirement of an experimental computational environment for social media research and presents as an illustration the system architecture of a social media (analytics) platform built by University College London. The principal contribution of this paper is to provide an overview (including code fragments) for scientists seeking to utilize social media scraping and analytics either in their research or business. The data retrieval techniques that are presented in this paper are valid at the time of writing this paper (June 2014), but they are subject to change since social media data scraping APIs are rapidly changing

    Intelligent Management and Efficient Operation of Big Data

    Get PDF
    This chapter details how Big Data can be used and implemented in networking and computing infrastructures. Specifically, it addresses three main aspects: the timely extraction of relevant knowledge from heterogeneous, and very often unstructured large data sources, the enhancement on the performance of processing and networking (cloud) infrastructures that are the most important foundational pillars of Big Data applications or services, and novel ways to efficiently manage network infrastructures with high-level composed policies for supporting the transmission of large amounts of data with distinct requisites (video vs. non-video). A case study involving an intelligent management solution to route data traffic with diverse requirements in a wide area Internet Exchange Point is presented, discussed in the context of Big Data, and evaluated.Comment: In book Handbook of Research on Trends and Future Directions in Big Data and Web Intelligence, IGI Global, 201

    Extracting Features from 3D Unstructured Meshes for Interactive Visualization

    Get PDF
    This paper describes techniques, based on the extraction of geometric features, for facilitating the visualization and interactive manipulation of the typically very large and dense threedimensional unstructured grids used in aerodynamics calculations. We discuss the difficulties that scientists currently face in efficiently and effectively displaying these meshes and propose methods for using geometric feature lines to clearly and concisely indicate the essential structural detail of the model while eliminating much of the unnecessary visual clutter. We describe the perceptual importance of specific viewpoint-dependent and view-independent features, discuss the practical implementation of simple but effective algorithms for identifying these features (taking into consideration both local and global criteria), and demonstrate the performance of each proposed technique on various types of data sets. y This research was supported by the National Aeronautics and Space Administration unde..
    corecore