15,682 research outputs found

    Scientific visualization in mineral and material processing

    Get PDF
    Journal ArticleScientific visualization is an ideal methodology for investigating complex phenomena that are characterized by large amounts of data. Furthermore, it is invaluable in the study of processes that evolve in time. Scientific visualization relies heavily on computer graphics, image processing and video technologies. Specific applications of scientific visualization in the minerals and materials processing fields that are considered in this paper include: 1) applied CT technology for multiphase materials and minerals, 2) time averaged density profiles in airsparged hydrocyclone (ASH) flotation and 3) dynamic motion analysis of ball mill grinding

    A virtual world of paleontology

    Get PDF
    Computer-aided visualization and analysis of fossils has revolutionized the study of extinct organisms. Novel techniques allow fossils to be characterized in three dimensions and in unprecedented detail. This has enabled paleontologists to gain important insights into their anatomy, development, and preservation. New protocols allow more objective reconstructions of fossil organisms, including soft tissues, from incomplete remains. The resulting digital reconstructions can be used in functional analyses, rigorously testing long-standing hypotheses regarding the paleobiology of extinct organisms. These approaches are transforming our understanding of long-studied fossil groups, and of the narratives of organismal and ecological evolution that have been built upon them

    Motion in place: a case study of archaeological reconstruction using motion capture

    Get PDF
    Human movement constitutes a fundamental part of the archaeological process, and of any interpretationof a site’s usage; yet there has to date been little or no consideration of how movement observed (incontemporary situations) and inferred (in archaeological reconstruction) can be documented. This paper reports on the Motion in Place Platform project, which seeks to use motion capture hardware and data totest human responses to Virtual Reality (VR) environments and their real-world equivalents using round houses of the Southern British Iron Age which have been both modelled in 3D and reconstructed in the present day as a case study. This allows us to frame questions about the assumptions which are implicitlyhardwired into VR presentations of archaeology and cultural heritage in new ways. In the future, this will lead to new insights into how VR models can be constructed, used and transmitted

    Software for full-color 3D reconstruction of the biological tissues internal structure

    Full text link
    A software for processing sets of full-color images of biological tissue histological sections is developed. We used histological sections obtained by the method of high-precision layer-by-layer grinding of frozen biological tissues. The software allows restoring the image of the tissue for an arbitrary cross-section of the tissue sample. Thus, our method is designed to create a full-color 3D reconstruction of the biological tissue structure. The resolution of 3D reconstruction is determined by the quality of the initial histological sections. The newly developed technology available to us provides a resolution of up to 5 - 10 {\mu}m in three dimensions.Comment: 11 pages, 8 figure

    Fragmentation of a viscoelastic food by human mastication

    Full text link
    Fragment-size distributions have been studied experimentally in masticated viscoelastic food (fish sausage).The mastication experiment in seven subjects was examined. We classified the obtained results into two groups, namely, a single lognormal distribution group and a lognormal distribution with exponential tail group. The facts suggest that the individual variability might affect the fragmentation pattern when the food sample has a much more complicated physical property. In particular, the latter result (lognormal distribution with exponential tail) indicates that the fragmentation pattern by human mastication for fish sausage is different from the fragmentation pattern for raw carrot shown in our previous study. The excellent data fitting by the lognormal distribution with exponential tail implies that the fragmentation process has a size-segregation-structure between large and small parts.In order to explain this structure, we propose a mastication model for fish sausage based on stochastic processes.Comment: JPSJ3, 4 pages, 8 figures, minor corrections made for publication in J. Phys. Soc. Jp

    Enhanced self-healing capacity in cementitious materials by use of encapsulated carbonate precipitating bacteria : from proof-of-concept to reality

    Get PDF
    In this study, two bacteria-based self-healing systems were developed for the proof-of-concept and approach to a realistic self-healing. A self-healing system with glass capillaries and silica sol gel carried bacterial cells was first built. The bio-CaCO3 formed in-situ (in silica gel) after glass capillaries breakage preliminarily showed the feasibility of this system. The investigation on the selfhealing efficiency demonstrated that the water permeability was decreased by about two orders of magnitude due to self-healing. However, practical application of this system was limited by the use of the un-mixable and expensive glass capillaries. A second self-healing system therefore was built in order to approach a realistic self-healing, by using hydrogel encapsulated bacteria. Great superiority in healing efficiency was obtained in this system. A maximum crack width of 0.5 mm could be healed within 7 days in the specimens of the bacterial series; while the maximum crack width can be healed in other series was in the range of 0.2~0.3 mm. Water permeability was greatly decreased (68%) in the bacterial series
    corecore