7,476 research outputs found

    Revisiting the Design Patterns of Composite Visualizations

    Full text link
    Composite visualization is a popular design strategy that represents complex datasets by integrating multiple visualizations in a meaningful and aesthetic layout, such as juxtaposition, overlay, and nesting. With this strategy, numerous novel designs have been proposed in visualization publications to accomplish various visual analytic tasks. These well-crafted composite visualizations have formed a valuable collection for designers and researchers to address real-world problems and inspire new research topics and designs. However, there is a lack of understanding of design patterns of composite visualization, thus failing to provide holistic design space and concrete examples for practical use. In this paper, we opted to revisit the composite visualizations in VIS publications and answered what and how visualizations of different types are composed together. To achieve this, we first constructed a corpus of composite visualizations from IEEE VIS publications and decomposed them into a series of basic visualization types (e.g., bar chart, map, and matrix). With this corpus, we studied the spatial (e.g., separated or overlaying) and semantic relationships (e.g., with same types or shared axis) between visualizations and proposed a taxonomy consisting of eight different design patterns (e.g., repeated, stacked, accompanied, and nested). Furthermore, we analyzed and discussed common practices of composite visualizations, such as the distribution of different patterns and correlations between visualization types. From the analysis and examples, we obtained insights into different design patterns on the utilities, advantages, and disadvantages. Finally, we developed an interactive system to help visualization developers and researchers conveniently explore collected examples and design patterns

    Text and Spatial-Temporal Data Visualization

    Get PDF
    In this dissertation, we discuss a text visualization system, a tree drawing algorithm, a spatial-temporal data visualization paradigm and a tennis match visualization system. Corpus and corpus tools have become an important part of language teaching and learning. And yet text visualization is rarely used in this area. We present Text X-Ray, a Web tool for corpus-based language teaching and learning and the interactive text visualizations in Text X-Ray allow users to quickly examine a corpus or corpora at different levels of details: articles, paragraphs, sentences, and words. Level-based tree drawing is a common algorithm that produces intuitive and clear presentations of hierarchically structured information. However, new applications often introduces new aesthetic requirements that call for new tree drawing methods. We present an indented level-based tree drawing algorithm for visualizing parse trees of English language. This algorithm displays a tree with an aspect ratio that fits the aspect ratio of the newer computer displays, while presenting the words in a way that is easy to read. We discuss the design of the algorithm and its application in text visualization for linguistic analysis and language learning. A story is a chain of events. Each event has multiple dimensions, including time, location, characters, actions, and context. Storyline visualizations attempt to visually present the many dimensions of a story’s events and their relationships. Integrating the temporal and spatial dimension in a single visualization view is often desirable but highly challenging. One of the main reasons is that spatial data is inherently 2D while temporal data is inherently 1D. We present a storyline visualization technique that integrate both time and location information in a single view. Sports data visualization can be a useful tool for analyzing or presenting sports data. We present a new technique for visualizing tennis match data. It is designed as a supplement to online live streaming or live blogging of tennis matches and can retrieve data directly from a tennis match live blogging web site and display 2D interactive view of match statistics. Therefore, it can be easily integrated with the current live blogging platforms used by many news organizations. The visualization addresses the limitations of the current live coverage of tennis matches by providing a quick overview and also a great amount of details on demand

    Computer-based tracking, analysis, and visualization of linguistically significant nonmanual events in American Sign Language (ASL)

    Full text link
    Our linguistically annotated American Sign Language (ASL) corpora have formed a basis for research to automate detection by computer of essential linguistic information conveyed through facial expressions and head movements. We have tracked head position and facial deformations, and used computational learning to discern specific grammatical markings. Our ability to detect, identify, and temporally localize the occurrence of such markings in ASL videos has recently been improved by incorporation of (1) new techniques for deformable model-based 3D tracking of head position and facial expressions, which provide significantly better tracking accuracy and recover quickly from temporary loss of track due to occlusion; and (2) a computational learning approach incorporating 2-level Conditional Random Fields (CRFs), suited to the multi-scale spatio-temporal characteristics of the data, which analyses not only low-level appearance characteristics, but also the patterns that enable identification of significant gestural components, such as periodic head movements and raised or lowered eyebrows. Here we summarize our linguistically motivated computational approach and the results for detection and recognition of nonmanual grammatical markings; demonstrate our data visualizations, and discuss the relevance for linguistic research; and describe work underway to enable such visualizations to be produced over large corpora and shared publicly on the Web

    Adaptive content mapping for internet navigation

    Get PDF
    The Internet as the biggest human library ever assembled keeps on growing. Although all kinds of information carriers (e.g. audio/video/hybrid file formats) are available, text based documents dominate. It is estimated that about 80% of all information worldwide stored electronically exists in (or can be converted into) text form. More and more, all kinds of documents are generated by means of a text processing system and are therefore available electronically. Nowadays, many printed journals are also published online and may even discontinue to appear in print form tomorrow. This development has many convincing advantages: the documents are both available faster (cf. prepress services) and cheaper, they can be searched more easily, the physical storage only needs a fraction of the space previously necessary and the medium will not age. For most people, fast and easy access is the most interesting feature of the new age; computer-aided search for specific documents or Web pages becomes the basic tool for information-oriented work. But this tool has problems. The current keyword based search machines available on the Internet are not really appropriate for such a task; either there are (way) too many documents matching the specified keywords are presented or none at all. The problem lies in the fact that it is often very difficult to choose appropriate terms describing the desired topic in the first place. This contribution discusses the current state-of-the-art techniques in content-based searching (along with common visualization/browsing approaches) and proposes a particular adaptive solution for intuitive Internet document navigation, which not only enables the user to provide full texts instead of manually selected keywords (if available), but also allows him/her to explore the whole database
    • …
    corecore