43 research outputs found

    DAG-Based Attack and Defense Modeling: Don't Miss the Forest for the Attack Trees

    Full text link
    This paper presents the current state of the art on attack and defense modeling approaches that are based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based methodologies, each having different features and goals. The objective of this survey is to present a complete overview of graphical attack and defense modeling techniques based on DAGs. This consists of summarizing the existing methodologies, comparing their features and proposing a taxonomy of the described formalisms. This article also supports the selection of an adequate modeling technique depending on user requirements

    Implementing the ADVISE Security Modeling Formalism in Möbius

    Get PDF
    Abstract-The ADversary VIew Security Evaluation (ADVISE) model formalism provides a system security model from the perspective of an adversary. An ADVISE atomic model consists of an attack execution graph (AEG) composed of attack steps, system state variables, and attack goals, as well as an adversary profile that defines the abilities and interests of a particular adversary. The ADVISE formalism has been implemented as a Möbius atomic model formalism in order to leverage the existing set of mature modeling formalisms and solution techniques offered by Möbius. This tool paper explains the ADVISE implementation in Möbius and provides technical details for Möbius users who want to use ADVISE either alone or in combination with other modeling formalisms provided by Möbius

    Supporting Methodology Transfer in Visualization Research with Literature-Based Discovery and Visual Text Analytics

    Get PDF
    [ES] La creciente especialización de la ciencia está motivando la rápida fragmentación de disciplinas bien establecidas en comunidades interdisciplinares. Esta descom- posición se puede observar en un tipo de investigación en visualización conocida como investigación de visualización dirigida por el problema. En ella, equipos de expertos en visualización y un dominio concreto, colaboran en un área específica de conocimiento como pueden ser las humanidades digitales, la bioinformática, la seguridad informática o las ciencias del deporte. Esta tesis propone una serie de métodos inspirados en avances recientes en el análisis automático de textos y la rep- resentación del conocimiento para promover la adecuada comunicación y transferen- cia de conocimiento entre estas comunidades. Los métodos obtenidos se combinaron en una interfaz de análisis visual de textos orientada al descubrimiento científico, GlassViz, que fue diseñada con estos objetivos en mente. La herramienta se probó por primera vez en el dominio de las humanidades digitales para explorar un corpus masivo de artículos de visualización de propósito general. GlassViz fue adaptada en un estudio posterior para que soportase diferentes fuentes de datos representativas de estas comunidades, mostrando evidencia de que el enfoque propuesto también es una alternativa válida para abordar el problema de la fragmentación en la investigación en visualización

    Visualising network security attacks with multiple 3D visualisation and false alert classification

    Get PDF
    Increasing numbers of alerts produced by network intrusion detection systems (NIDS) have burdened the job of security analysts especially in identifying and responding to them. The tasks of exploring and analysing large quantities of communication network security data are also difficult. This thesis studied the application of visualisation in combination with alerts classifier to make the exploring and understanding of network security alerts data faster and easier. The prototype software, NSAViz, has been developed to visualise and to provide an intuitive presentation of the network security alerts data using interactive 3D visuals with an integration of a false alert classifier. The needs analysis of this prototype was based on the suggested needs of network security analyst's tasks as seen in the literatures. The prototype software incorporates various projections of the alert data in 3D displays. The overview was plotted in a 3D plot named as "time series 3D AlertGraph" which was an extension of the 2D histographs into 3D. The 3D AlertGraph was effectively summarised the alerts data and gave the overview of the network security status. Filtering, drill-down and playback of the alerts at variable speed were incorporated to strengthen the analysis. Real-time visual observation was also included. To identify true alerts from all alerts represents the main task of the network security analyst. This prototype software was integrated with a false alert classifier using a classification tree based on C4.5 classification algorithm to classify the alerts into true and false. Users can add new samples and edit the existing classifier training sample. The classifier performance was measured using k-fold cross-validation technique. The results showed the classifier was able to remove noise in the visualisation, thus making the pattern of the true alerts to emerge. It also highlighted the true alerts in the visualisation. Finally, a user evaluation was conducted to find the usability problems in the tool and to measure its effectiveness. The feed backs showed the tools had successfully helped the task of the security analyst and increased the security awareness in their supervised network. From this research, the task of exploring and analysing a large amount of network security data becomes easier and the true attacks can be identified using the prototype visualisation tools. Visualisation techniques and false alert classification are helpful in exploring and analysing network security data.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    3D Visualisation - An Application and Assessment for Computer Network Traffic Analysis

    Full text link
    The intent of this research is to develop and assess the application of 3D data visualisation to the field of computer security. The growth of available data relating to computer networks necessitates a more efficient and effective way of presenting information to analysts in support of decision making and situational awareness. Advances in computer hardware and display software have made more complex and interactive presentation of data in 3D possible. While many attempts at creation of data-rich 3D displays have been made in the field of computer security, they have not become the tool of choice in the industry. There is also a limited amount of published research in the assessment of these tools in comparison to 2D graphical and tabular approaches to displaying the same data. This research was conducted through creation of a novel abstraction framework for visualisation of computer network data, the Visual Interactive Network Analysis Framework (VINAF). This framework was implemented in software and the software prototype was assessed using both a procedural approach applied to a published forensics challenge and also through a human participant based experiment. The key contributions to the fields of computer security and data visualisation made by this research include the creation of a novel abstraction framework for computer network traffic which features several new visualisation approaches. An implementation of this software was developed for the specific cybersecurity related task of computer network traffic analysis and published under an open source license to the cybersecurity community. The research contributes a novel approach to human-based experimentation developed during the COVID-19 pandemic and also implemented a novel procedure-based testing approach to the assessment of the prototype data visualisation tool. Results of the research showed, through procedural experimentation, that the abstraction framework is effective for network forensics tasks and exhibited several advantages when compared to alternate approaches. The user participation experiment indicated that most of the participants deemed the abstraction framework to be effective in several task related to computer network traffic analysis. There was not a strong indication that it would be preferred over existing approaches utilised by the participants, however, it would likely be used to augment existing methods

    Comparative Uncertainty Visualization for High-Level Analysis of Scalar- and Vector-Valued Ensembles

    Get PDF
    With this thesis, I contribute to the research field of uncertainty visualization, considering parameter dependencies in multi valued fields and the uncertainty of automated data analysis. Like uncertainty visualization in general, both of these fields are becoming more and more important due to increasing computational power, growing importance and availability of complex models and collected data, and progress in artificial intelligence. I contribute in the following application areas: Uncertain Topology of Scalar Field Ensembles. The generalization of topology-based visualizations to multi valued data involves many challenges. An example is the comparative visualization of multiple contour trees, complicated by the random nature of prevalent contour tree layout algorithms. I present a novel approach for the comparative visualization of contour trees - the Fuzzy Contour Tree. Uncertain Topological Features in Time-Dependent Scalar Fields. Tracking features in time-dependent scalar fields is an active field of research, where most approaches rely on the comparison of consecutive time steps. I created a more holistic visualization for time-varying scalar field topology by adapting Fuzzy Contour Trees to the time-dependent setting. Uncertain Trajectories in Vector Field Ensembles. Visitation maps are an intuitive and well-known visualization of uncertain trajectories in vector field ensembles. For large ensembles, visitation maps are not applicable, or only with extensive time requirements. I developed Visitation Graphs, a new representation and data reduction method for vector field ensembles that can be calculated in situ and is an optimal basis for the efficient generation of visitation maps. This is accomplished by bringing forward calculation times to the pre-processing. Visually Supported Anomaly Detection in Cyber Security. Numerous cyber attacks and the increasing complexity of networks and their protection necessitate the application of automated data analysis in cyber security. Due to uncertainty in automated anomaly detection, the results need to be communicated to analysts to ensure appropriate reactions. I introduce a visualization system combining device readings and anomaly detection results: the Security in Process System. To further support analysts I developed an application agnostic framework that supports the integration of knowledge assistance and applied it to the Security in Process System. I present this Knowledge Rocks Framework, its application and the results of evaluations for both, the original and the knowledge assisted Security in Process System. For all presented systems, I provide implementation details, illustrations and applications

    Knowledge extraction from pointer movements and its application to detect uncertainty

    Get PDF
    This work was supported by the Doctoral Program NOVA I4H (Fundacao para a Ciencia e a Tecnologia) [grant PD/BDE/114561/2016].Pointer-tracking methods can capture a real-time trace at high spatio-temporal resolution of users' pointer interactions with a graphical user interface. This trace is potentially valuable for research on human-computer interaction (HCI) and for investigating perceptual, cognitive and affective processes during HCI. However, little research has reported spatio-temporal pointer features for the purpose of tracking pointer movements in on-line surveys. In two studies, we identified a set of pointer features and movement patterns and showed that these can be easily distinguished. In a third study, we explored the feasibility of using patterns of interactive pointer movements, or micro-behaviours, to detect response uncertainty. Using logistic regression and k-fold cross-validation in model training and testing, the uncertainty model achieved an estimated performance accuracy of 81%. These findings suggest that micro-behaviours provide a promising approach toward developing a better understanding of the relationship between the dynamics of pointer movements and underlying perceptual, cognitive and affective psychological mechanisms. Human-computer interaction; Pointer-tracking; Mouse movement dynamics; Decision uncertainty; On-line survey; Spatio-temporal features; Machine learningproofpublishe

    Digital Forensics Tool Interface Visualization

    Get PDF
    Recent trends show digital devices utilized with increasing frequency in most crimes committed. Investigating crime involving these devices is labor-intensive for the practitioner applying digital forensics tools that present possible evidence with results displayed in tabular lists for manual review. This research investigates how enhanced digital forensics tool interface visualization techniques can be shown to improve the investigator\u27s cognitive capacities to discover criminal evidence more efficiently. This paper presents visualization graphs and contrasts their properties with the outputs of The Sleuth Kit (TSK) digital forensic program. Exhibited is the textual-based interface proving the effectiveness of enhanced data presentation. Further demonstrated is the potential of the computer interface to present to the digital forensic practitioner an abstract, graphic view of an entire dataset of computer files. Enhanced interface design of digital forensic tools means more rapidly linking suspicious evidence to a perpetrator. Introduced in this study is a mixed methodology of ethnography and cognitive load measures. Ethnographically defined tasks developed from the interviews of digital forensics subject matter experts (SME) shape the context for cognitive measures. Cognitive load testing of digital forensics first-responders utilizing both a textual-based and visualized-based application established a quantitative mean of the mental workload during operation of the applications under test. A t-test correlating the dependent samples\u27 mean tested for the null hypothesis of less than a significant value between the applications\u27 comparative workloads of the operators. Results of the study indicate a significant value, affirming the hypothesis that a visualized application would reduce the cognitive workload of the first-responder analyst. With the supported hypothesis, this work contributes to the body of knowledge by validating a method of measurement and by providing empirical evidence that the use of the visualized digital forensics interface will provide a more efficient performance by the analyst, saving labor costs and compressing time required for the discovery phase of a digital investigation

    Security Analysis of System Behaviour - From "Security by Design" to "Security at Runtime" -

    Get PDF
    The Internet today provides the environment for novel applications and processes which may evolve way beyond pre-planned scope and purpose. Security analysis is growing in complexity with the increase in functionality, connectivity, and dynamics of current electronic business processes. Technical processes within critical infrastructures also have to cope with these developments. To tackle the complexity of the security analysis, the application of models is becoming standard practice. However, model-based support for security analysis is not only needed in pre-operational phases but also during process execution, in order to provide situational security awareness at runtime. This cumulative thesis provides three major contributions to modelling methodology. Firstly, this thesis provides an approach for model-based analysis and verification of security and safety properties in order to support fault prevention and fault removal in system design or redesign. Furthermore, some construction principles for the design of well-behaved scalable systems are given. The second topic is the analysis of the exposition of vulnerabilities in the software components of networked systems to exploitation by internal or external threats. This kind of fault forecasting allows the security assessment of alternative system configurations and security policies. Validation and deployment of security policies that minimise the attack surface can now improve fault tolerance and mitigate the impact of successful attacks. Thirdly, the approach is extended to runtime applicability. An observing system monitors an event stream from the observed system with the aim to detect faults - deviations from the specified behaviour or security compliance violations - at runtime. Furthermore, knowledge about the expected behaviour given by an operational model is used to predict faults in the near future. Building on this, a holistic security management strategy is proposed. The architecture of the observing system is described and the applicability of model-based security analysis at runtime is demonstrated utilising processes from several industrial scenarios. The results of this cumulative thesis are provided by 19 selected peer-reviewed papers

    A framework for the application of network telescope sensors in a global IP network

    Get PDF
    The use of Network Telescope systems has become increasingly popular amongst security researchers in recent years. This study provides a framework for the utilisation of this data. The research is based on a primary dataset of 40 million events spanning 50 months collected using a small (/24) passive network telescope located in African IP space. This research presents a number of differing ways in which the data can be analysed ranging from low level protocol based analysis to higher level analysis at the geopolitical and network topology level. Anomalous traffic and illustrative anecdotes are explored in detail and highlighted. A discussion relating to bogon traffic observed is also presented. Two novel visualisation tools are presented, which were developed to aid in the analysis of large network telescope datasets. The first is a three-dimensional visualisation tool which allows for live, near-realtime analysis, and the second is a two-dimensional fractal based plotting scheme which allows for plots of the entire IPv4 address space to be produced, and manipulated. Using the techniques and tools developed for the analysis of this dataset, a detailed analysis of traffic recorded as destined for port 445/tcp is presented. This includes the evaluation of traffic surrounding the outbreak of the Conficker worm in November 2008. A number of metrics relating to the description and quantification of network telescope configuration and the resultant traffic captures are described, the use of which it is hoped will facilitate greater and easier collaboration among researchers utilising this network security technology. The research concludes with suggestions relating to other applications of the data and intelligence that can be extracted from network telescopes, and their use as part of an organisation’s integrated network security system
    corecore