1,299 research outputs found

    Analysis of Epithelial Growth Factor-Receptor (EGFR) Phosphorylation in Uterine Smooth Muscle Tumors

    Get PDF
    Uterine fibroids are the commonest uterine benign tumors. A potential mechanism of malignant transformation from leiomyomas to leiomyosarcomas has beendescribed. Tyrosine phosphorylation is a key mechanism that controls biological functions, such as proliferation and cell differentiation. The aim of the current study was to evaluate the phosphorylation of epithelial growth factor-receptor (EGFR) in normal myometrium, uterine myomas and uterine leiomyosarcomas. Formalin-fixed paraffin-embedded tissue samples from normal myometrium, leiomyomas and leiomyosarcomas were studied. Samples were immunohistochemically (IHC) assessed using the anti-EGFR phosphorylation of Y845 (pEGFR-Y845) and anti-pEGFR-Y1173 phosphorylation-specific antibodies. IHC staining was evaluated using a semiquantitative score. The expression of pEGFR-Y845 was significantly upregulated in leiomyosarcomas (p < 0.001) compared to leiomyomas and normal myometrium. In contrast, pEGFR-Y1173 did not differ significantly between the three groups of the study. Correlation analysis revealed an overall positive correlation between pEGFR Y845 and mucin 1 (MUC1). Further subgroup analysis within the tumoral group (myomas and leiomyosarcomas) revealed an additional negative correlation between pEGFR Y845 and galectin-3 (gal-3) staining. On the contrary no significant correlation was noted within the non-tumoral group. An upregulated EGFR phosphorylation of Y845 in leiomyosarcomas compared to leiomyomas implicates EGFR activation at this special receptor site. Due to these pEGFR-Y845 variations, it can be postulated that MUC1 interacts with it, whereas gal-3 seems to be cleaved from Y845 phosphorylated EGFR. Further research on this field could focus on differences in EGFR pathways as a potentially advantageous diagnostic tool for investigation of benign and malignant signal transduction processes

    Glucose sensor O-GlcNAcylation coordinates with phosphorylation to regulate circadian clock.

    Get PDF
    Posttranslational modifications play central roles in&nbsp;myriad biological pathways including circadian regulation. We employed a circadian proteomic approach to demonstrate that circadian timing of phosphorylation is a critical factor in regulating complex GSK3β-dependent pathways and identified O-GlcNAc transferase (OGT) as a substrate of GSK3β. Interestingly, OGT activity is regulated by GSK3β; hence, OGT and GSK3β exhibit reciprocal regulation. Modulating O-GlcNAcylation levels alter circadian period length in both mice and Drosophila; conversely, protein O-GlcNAcylation is circadianly regulated. Central clock proteins, Clock and Period, are reversibly modified by O-GlcNAcylation to regulate their transcriptional activities. In addition, O-GlcNAcylation of a region in PER2 known to regulate human sleep phase (S662-S674) competes with phosphorylation of this region, and this interplay is at least partly mediated by glucose levels. Together, these results indicate that O-GlcNAcylation serves as a metabolic sensor for clock regulation and works coordinately with phosphorylation to fine-tune circadian clock

    Neuroblastoma patient outcomes, tumor differentiation, and ERK activation are correlated with expression levels of the ubiquitin ligase UBE4B.

    Get PDF
    BackgroundUBE4B is an E3/E4 ubiquitin ligase whose gene is located in chromosome 1p36.22. We analyzed the associations of UBE4B gene and protein expression with neuroblastoma patient outcomes and with tumor prognostic features and histology.MethodsWe evaluated the association of UBE4B gene expression with neuroblastoma patient outcomes using the R2 Platform. We screened neuroblastoma tumor samples for UBE4B protein expression using immunohistochemistry. FISH for UBE4B and 1p36 deletion was performed on tumor samples. We then evaluated UBE4B expression for associations with prognostic factors and with levels of phosphorylated ERK in neuroblastoma tumors and cell lines.ResultsLow UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma and with worse outcomes in all patient subgroups. UBE4B protein expression was associated with neuroblastoma tumor differentiation, and decreased UBE4B protein levels were associated with high-risk features. UBE4B protein levels were also associated with levels of phosphorylated ERK.ConclusionsWe have demonstrated associations between UBE4B gene expression and neuroblastoma patient outcomes and prognostic features. Reduced UBE4B protein expression in neuroblastoma tumors was associated with high-risk features, a lack of differentiation, and with ERK activation. These results suggest UBE4B may contribute to the poor prognosis of neuroblastoma tumors with 1p36 deletions and that UBE4B expression may mediate neuroblastoma differentiation

    Angiogenic Role of Mesothelium-Derived Chemokine CXCL1 During Unfavorable Peritoneal Tissue Remodeling in Patients Receiving Peritoneal Dialysis as Renal Replacement Therapy

    Get PDF
    Peritoneal dialysis (PD) is a valuable 'home treatment' option, even more so during the ongoing Coronavirus pandemic. However, the long-term use of PD is limited by unfavourable tissue remodelling in the peritoneal membrane, which is associated with inflammation-induced angiogenesis. This appears to be driven primarily through vascular endothelial growth factor (VEGF), while the involvement of other angiogenic signaling pathways is still poorly understood. Here, we have identified the crucial contribution of mesothelial cell-derived angiogenic CXC chemokine ligand 1 (CXCL1) to peritoneal angiogenesis in PD. CXCL1 expression and peritoneal microvessel density were analysed in biopsies obtained by the International Peritoneal Biobank (NCT01893710 at www.clinicaltrials.gov), comparing 13 children with end-stage kidney disease before initiating PD to 43 children on chronic PD. The angiogenic potential of mesothelial cell-derived CXCL1 was assessed in vitro by measuring endothelial tube formation of human microvascular endothelial cells (HMECs) treated with conditioned medium from human peritoneal mesothelial cells (HPMCs) stimulated to release CXCL1 by treatment with either recombinant IL-17 or PD effluent. We found that the capillary density in the human peritoneum correlated with local CXCL1 expression. Both CXCL1 expression and microvessel density were higher in PD patients than in the age-matched patients prior to initiation of PD. Exposure of HMECs to recombinant CXCL1 or conditioned medium from IL-17-stimulated HPMCs resulted in increased endothelial tube formation, while selective inhibition of mesothelial CXCL1 production by specific antibodies or through silencing of relevant transcription factors abolished the proangiogenic effect of HPMC-conditioned medium. In conclusion, peritoneal mesothelium-derived CXCL1 promotes endothelial tube formation in vitro and associates with peritoneal microvessel density in uremic patients undergoing PD, thus providing novel targets for therapeutic intervention to prolong PD therapy

    Light microscopic immunocytochemical identification of leucine enkephalin

    Get PDF
    Leucine-enkephalin is a potent and naturally-occurring opioid peptide which serves to inhibit other neurotransmitters involved with pain perception, thereby reducing its emotional and physical impact. Nevertheless, there is little data in the literature concerning leucine-enkephalin-immunoreactivity (Leu-enk-ir) in the human claustrum. The objectives of this study were to confirm the existence of leucine-enkephalin immunoreactive neurons and fibers in the human claustrum. Light microscopy was used to describe their morphology and distribution. Samples of claustrum were obtained from the brains of two females (39 and 48 years of age) and two males (27 and 42 years of age). The brains did not show any overt signs of pathology or trauma. Immunoreactivity to Leuenk was assessed via the Avidin-Biotin Complex Method. Light-microscopic analysis confirmed the presence of Leu-enk-ir neurons and fibres in all areas of the human claustrum. The cell bodies varied in shape and size, and were divided into three groups: small, medium and large. The density of immunostaining varied both within and between the cell types, with some neurons, staining more darkly or lightly than others. The large and medium sized cells most likely correspond to claustrocortical projection neurons while the small-sized cells appear to be inhibitory interneurons. It is our hope that these results will be contributed to a better understanding the functions of claustrum, in both health and disease, given its relationship with the development of autism, schizophrenia, Alzheimer disease, Parkinson disease and Huntington disease

    Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons.

    Get PDF
    Neuron populations of the lateral hypothalamus which synthesize the orexin (OX)/hypocretin or melanin-concentrating hormone (MCH) peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT), also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b.) parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomys natalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction) and MCH neurons (about 54% reduction) was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively), which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN) region and the thalamic paraventricular nucleus (PVT), densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic neuroinflammatory signaling caused by the infection of human-pathogenic African trypanosomes

    Pathologic gene network rewiring implicates PPP1R3A as a central regulator in pressure overload heart failure

    Get PDF
    Heart failure is a leading cause of mortality, yet our understanding of the genetic interactions underlying this disease remains incomplete. Here, we harvest 1352 healthy and failing human hearts directly from transplant center operating rooms, and obtain genome-wide genotyping and gene expression measurements for a subset of 313. We build failing and non-failing cardiac regulatory gene networks, revealing important regulators and cardiac expression quantitative trait loci (eQTLs). PPP1R3A emerges as a regulator whose network connectivity changes significantly between health and disease. RNA sequencing after PPP1R3A knockdown validates network-based predictions, and highlights metabolic pathway regulation associated with increased cardiomyocyte size and perturbed respiratory metabolism. Mice lacking PPP1R3A are protected against pressure-overload heart failure. We present a global gene interaction map of the human heart failure transition, identify previously unreported cardiac eQTLs, and demonstrate the discovery potential of disease-specific networks through the description of PPP1R3A as a central regulator in heart failure
    corecore