15 research outputs found

    Realistic rendering and reconstruction of astronomical objects and an augmented reality application for astronomy

    Get PDF
    These days, there is an ever increasing need for realistic models, renderings and visualization of astronomical objects to be used in planetarium and as a tool in modern astrophysical research. One of the major goals of this dissertation is to develop novel algorithms for recovering and rendering 3D models of a specific set of astronomical objects. We first present a method to render the color and shape of the solar disc in different climate conditions as well as for different height to temperature atmospheric profiles. We then present a method to render and reconstruct the 3D distribution of reflection nebulae. The rendering model takes into account scattering and absorption to generate physically realistic visualization of reflection nebulae. Further, we propose a reconstruction method for another type of astronomical objects, planetary nebulae. We also present a novel augmented reality application called the augmented astronomical telescope, tailored for educational astronomy. The real-time application augments the view through a telescope by projecting additional information such as images, text and video related to the currently observed object during observation. All methods previously proposed for rendering and reconstructing astronomical objects can be used to create novel content for the presented augmented reality application.Realistische Modelle, Visualisierungen und Renderings von astronomischen Objekten gewinnen heuzutage in Planetarium Shows oder als Werkzeug für die Astrophysikalische Forschung immer mehr an Bedeutung. Eines der Hauptziele dieser Dissertation ist es, neue Algorithmen zum Rendering und zur Rekonstruktion von Astronomischen Objekten zu entwickeln. Wir beschreiben zuerst ein Verfahren zum Rendering von Farbe und Form der Sonnenscheibe für verschiedene Klimate und gegebenen Höhe zu Temperatur Profilen. Im weiterem wird eine Methode zum Rendering und zur Rekonstruktion von 3D Modellen von Reflexionsnebeln präsentiert. Das Renderingmodell berücksichtigt Streuung und Absorption, um physikalisch realistische Visualisierungen von Reflexionsnebeln zu erzeugen. Weiter, wird ein Rekonstruktionsalgorithmus für eine andere Art astronomischer Objekte, Planetarische Nebel, vorgeschlagen. Wir stellen eine neuartige Erweiterte Realität Anwendung vor, welche für die astronomische Bildung zugeschnitten ist. Die Anwedung erweitert die Sicht durch das Okular des Teleskopes und projiziert zusätzliche Informationen wie Bilder, Text und Video online, während des Betrachtens. Alle vorher erwähnten Verfahren zum Rendering und zur Rekonstruktion von Astronomischen Objekten können verwendet werden, um Inhalte für die vorgestellte Erweiterte Realität Anwendung zu entwerfen

    Realistic rendering and reconstruction of astronomical objects and an augmented reality application for astronomy

    Get PDF
    These days, there is an ever increasing need for realistic models, renderings and visualization of astronomical objects to be used in planetarium and as a tool in modern astrophysical research. One of the major goals of this dissertation is to develop novel algorithms for recovering and rendering 3D models of a specific set of astronomical objects. We first present a method to render the color and shape of the solar disc in different climate conditions as well as for different height to temperature atmospheric profiles. We then present a method to render and reconstruct the 3D distribution of reflection nebulae. The rendering model takes into account scattering and absorption to generate physically realistic visualization of reflection nebulae. Further, we propose a reconstruction method for another type of astronomical objects, planetary nebulae. We also present a novel augmented reality application called the augmented astronomical telescope, tailored for educational astronomy. The real-time application augments the view through a telescope by projecting additional information such as images, text and video related to the currently observed object during observation. All methods previously proposed for rendering and reconstructing astronomical objects can be used to create novel content for the presented augmented reality application.Realistische Modelle, Visualisierungen und Renderings von astronomischen Objekten gewinnen heuzutage in Planetarium Shows oder als Werkzeug für die Astrophysikalische Forschung immer mehr an Bedeutung. Eines der Hauptziele dieser Dissertation ist es, neue Algorithmen zum Rendering und zur Rekonstruktion von Astronomischen Objekten zu entwickeln. Wir beschreiben zuerst ein Verfahren zum Rendering von Farbe und Form der Sonnenscheibe für verschiedene Klimate und gegebenen Höhe zu Temperatur Profilen. Im weiterem wird eine Methode zum Rendering und zur Rekonstruktion von 3D Modellen von Reflexionsnebeln präsentiert. Das Renderingmodell berücksichtigt Streuung und Absorption, um physikalisch realistische Visualisierungen von Reflexionsnebeln zu erzeugen. Weiter, wird ein Rekonstruktionsalgorithmus für eine andere Art astronomischer Objekte, Planetarische Nebel, vorgeschlagen. Wir stellen eine neuartige Erweiterte Realität Anwendung vor, welche für die astronomische Bildung zugeschnitten ist. Die Anwedung erweitert die Sicht durch das Okular des Teleskopes und projiziert zusätzliche Informationen wie Bilder, Text und Video online, während des Betrachtens. Alle vorher erwähnten Verfahren zum Rendering und zur Rekonstruktion von Astronomischen Objekten können verwendet werden, um Inhalte für die vorgestellte Erweiterte Realität Anwendung zu entwerfen

    Efficient rendering for three-dimensional displays

    Get PDF
    This thesis explores more efficient methods for visualizing point data sets on three-dimensional (3D) displays. Point data sets are used in many scientific applications, e.g. cosmological simulations. Visualizing these data sets in {3D} is desirable because it can more readily reveal structure and unknown phenomena. However, cutting-edge scientific point data sets are very large and producing/rendering even a single image is expensive. Furthermore, current literature suggests that the ideal number of views for 3D (multiview) displays can be in the hundreds, which compounds the costs. The accepted notion that many views are required for {3D} displays is challenged by carrying out a novel human factor trials study. The results suggest that humans are actually surprisingly insensitive to the number of viewpoints with regard to their task performance, when occlusion in the scene is not a dominant factor. Existing stereoscopic rendering algorithms can have high set-up costs which limits their use and none are tuned for uncorrelated {3D} point rendering. This thesis shows that it is possible to improve rendering speeds for a low number of views by perspective reprojection. The novelty in the approach described lies in delaying the reprojection and generation of the viewpoints until the fragment stage of the pipeline and streamlining the rendering pipeline for points only. Theoretical analysis suggests a fragment reprojection scheme will render at least 2.8 times faster than na\"{i}vely re-rendering the scene from multiple viewpoints. Building upon the fragment reprojection technique, further rendering performance is shown to be possible (at the cost of some rendering accuracy) by restricting the amount of reprojection required according to the stereoscopic resolution of the display. A significant benefit is that the scene depth can be mapped arbitrarily to the perceived depth range of the display at no extra cost than a single region mapping approach. Using an average case-study (rendering from a 500k points for a 9-view High Definition 3D display), theoretical analysis suggests that this new approach is capable of twice the performance gains than simply reprojecting every single fragment, and quantitative measures show the algorithm to be 5 times faster than a naïve rendering approach. Further detailed quantitative results, under varying scenarios, are provided and discussed

    Physically-based Cloud Rendering on GPU

    Get PDF
    Optická simulace participujících medií je zajímavý a taky důležitý problém, který ale nemá žádné jednoduché řešení. Mezi participujícími médii lze navíc oblaky, díky jejich pro simulaci složitým vlastnostem, chápat jako obzvláště náročný případ. Cílem této práce je navrhnout řešení tohoto problému a to navíc takové, které by tuto simulaci provádělo interaktivně. Hlavními kritérii při navrhnování teto metody byly její fyzikální věrnost a maximální využití některých výhodných vlastností oblaků, které by nám pomohly vyvážit jejich složitou podstatu. Ve výsledku je námi navrhovaná metoda postavená na algoritmu fotonových map, kterou ale zásadním způsobem modifikujeme tak, aby bylo dosáhnuto její interaktivity a časové koherence. Tomuto napomáhá i fakt, že jsme se při návrhu snažili, aby naši techniku bylo možné implementovat na součastných GPU, jejichž masivně paralelní výpočetní výkon jsme chtěli využít. Prototyp naší metody jsme implementovali v aplikaci, která je schopná interaktivně vykreslovat (zatím pouze) jeden oblak. Naše diskuze se tedy především zabývá tím, jak tento prototyp naší metody zlepšit natolik, aby jej bylo možné použít v různých praktických aplikacích v průmyslu.The rendering of participating media is an interesting and important problem without a simple solution. Yet even among the wide variety of participating media the clouds stand out as an especially difficult case, because of their properties that make their simulation even harder. The work presented in this thesis attempts to provide a solution to this problem, and moreover, to make the proposed method to work in interactive rendering speeds. The main design criteria in designing this method were its physical plausibility and maximal utilization of specific cloud properties which would help to balance the complex nature of clouds. As a result the proposed method builds on the well known photon mapping algorithm, but modifies it in several ways to obtain interactive and temporarily coherent results. This is further helped by designing the method in such a way which allows its implementation on contemporary GPUs, taking advantage of their massively parallel sheer computational power. We implement a prototype of the method in an application that renders a single realistic cloud in interactive framerates, and discuss possible extensions of the proposed technique that would allow its use in various practical industrial applications.Department of Software and Computer Science EducationKatedra softwaru a výuky informatikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Multiple viewpoint rendering for three-dimensional displays

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1997.Includes bibliographical references (leaves 159-164).Michael W. Halle.Ph.D

    Reconsidering light transport : acquisition and display of real-world reflectance and geometry

    Get PDF
    In this thesis, we cover three scenarios that violate common simplifying assumptions about the nature of light transport. We begin with the first ingredient to any çD rendering: a geometry model. Most çD scanners require the object-of-interest to show diffuse refectance. The further a material deviates from the Lambertian model, the more likely these setups are to produce corrupted results. By placing a traditional laser scanning setup in a participating (in particular, fuorescent) medium, we have built a light sheet scanner that delivers robust results for a wide range of materials, including glass. Further investigating the phenomenon of fluorescence, we notice that, despite its ubiquity, it has received moderate attention in computer graphics. In particular, to date no datadriven reflectance models of fluorescent materials have been available. To describe the wavelength-shifling reflectance of fluorescent materials, we define the bispectral bidirectional reflectance and reradiation distribution function (BRRDF), for which we introduce an image-based measurement setup as well as an efficient acquisition scheme. Finally, we envision a computer display that showsmaterials instead of colours, and present a prototypical device that can exhibit anisotropic reflectance distributions similar to common models in computer graphics.In der Computergraphik und Computervision ist es unerlässlich, vereinfachende Annahmen über die Ausbreitung von Licht zumachen. In dieser Dissertation stellen wir drei Fälle vor, in denen diese nicht zutreffen. So wird die dreidimensionale Geometrie von Gegenständen oft mit Hilfe von Laserscannern vermessen und dabei davon ausgegangen, dass ihre Oberfläche diffus reflektiert. Dies ist bei den meisten Materialien jedoch nicht gegeben, so dass die Ergebnisse oft fehlerhaft sind. Indem wir das Objekt in einem fluoreszierenden Medium einbetten, kann ein klassischer CD-Scanner-Aufbau so modifiziert werden, dass er verlässliche Geometriedaten für Objekte aus verschiedensten Materialien liefert, einschließlich Glas. Auch die akkurate Nachbildung des Aussehens von Materialien ist wichtig für die photorealistische Bildsynthese. Wieder interessieren wir uns für Fluoreszenz, diesmal allerdings für ihr charakteristisches Erscheinungsbild, das in der Computergraphik bislang kaum Beachtung gefunden hat. Wir stellen einen bildbasierten Aufbau vor, mit dem die winkel- und wellenlängenabhängige Reflektanz fluoreszierender Oberflächen ausgemessen werden kann, und eine Strategie, um solche Messungen effizient abzuwickeln. Schließlich befassen wir uns mit der Idee, nicht nur Farben dynamisch anzuzeigen, sondern auch Materialien und ihr je nach Lichteinfall und Blickwinkel unterschiedliches Aussehen. Einer generellen Beschreibung des Problems folgt die konkrete Umsetzung in Formzweier Prototypen, die verschiedene Reflektanzverteilungen auf einer Oberfläche darstellen können

    Cognitive Foundations for Visual Analytics

    Full text link

    Doctor of Philosophy

    Get PDF
    dissertationBalancing the trade off between the spatial and temporal quality of interactive computer graphics imagery is one of the fundamental design challenges in the construction of rendering systems. Inexpensive interactive rendering hardware may deliver a high level of temporal performance if the level of spatial image quality is sufficiently constrained. In these cases, the spatial fidelity level is an independent parameter of the system and temporal performance is a dependent variable. The spatial quality parameter is selected for the system by the designer based on the anticipated graphics workload. Interactive ray tracing is one example; the algorithm is often selected due to its ability to deliver a high level of spatial fidelity, and the relatively lower level of temporal performance isreadily accepted. This dissertation proposes an algorithm to perform fine-grained adjustments to the trade off between the spatial quality of images produced by an interactive renderer, and the temporal performance or quality of the rendered image sequence. The approach first determines the minimum amount of sampling work necessary to achieve a certain fidelity level, and then allows the surplus capacity to be directed towards spatial or temporal fidelity improvement. The algorithm consists of an efficient parallel spatial and temporal adaptive rendering mechanism and a control optimization problem which adjusts the sampling rate based on a characterization of the rendered imagery and constraints on the capacity of the rendering system

    Silver Nanowire Transparent Electrodes for Soft Optoelectronic and Electronic Devices

    Get PDF
    School of Energy and Chemical Engineering (Energy Engineering)Recently, with an increasing importance of human-machine interface along with the rapid growth of Internet of Things (IoT), various flexible and stretchable electronic and optoelectronic devices have been developed for the wide range of multifunctional and wearable applications such as touch screen panels, organic solar cells, organic light-emitting diodes, thin-film loudspeakers, microphones, interactive displays, and electronic skins. High mechanical flexibility/stretchability, optical transparency, and electrical conductivity are the critical properties that transparent conductive electrodes (TCEs) should possess for the realization of high-performance flexible/stretchable electronics and optoelectronics. While indium tin oxide (ITO) has been widely used in commercial TCEs, the further development and application of ITO have been limited by the high cost and inherent brittleness of the material. One promising alternative to ITO as a TCE material is silver nanowire (AgNW) networks having good flexibility and stretchability, which can provide lower sheet resistance (Rs) and higher optical transmittance (T) than other TCE candidates such as carbon nanotubes, graphene, and conducting polymers. Moreover, AgNW networks can be readily prepared by low-cost solution-based process, enabling the mass production of next-generation optoelectronic and electronic applications. The integration of AgNW networks with the flexible/stretchable substrates can provide powerful platforms to realize highly stable and high-performance soft optoelectronic and electronic devices with the superior transparency and stable supply of electrical conductivity during mechanical deformations. This thesis covers our recent studies about flexible/stretchable AgNW TCEs and their applications in various soft optoelectronic and functional electronic devices. First, chapter 1 introduces research trends in flexible/stretchable transparent electrodes and several issues of AgNW networks that should be carefully considered for their future soft optoelectronic and electronic device applications. In chapter 2, we demonstrated a simple and efficient assembly strategy for the large-area, highly cross-aligned AgNW arrays for TCE applications through a modified bar-coating assembly. As opposed to conventional solvent-evaporation-induced assemblies, which are slow and produce nonuniform conductive networks, our modified bar-coating strategy enables fast, efficient, and uniform alignment of AgNWs in a large-area by simply dragging the Meyer rod over the AgNW solution on the target substrates. For the potential applications, we demonstrated large-scale, flexible, and transparent resistive-type touch screens and force-sensitive mechanochromic touch screens using cross-aligned AgNW transparent electrodes which exhibited highly uniform and precise touch sensing performance across the entire region. In chapter 3, we introduced ultrathin, transparent, and conductive hybrid nanomembranes (NMs) with nanoscale thickness, consisting of the orthogonal AgNW arrays embedded in a polymer matrix. Here, we present a skin-attachable NM loudspeaker and wearable transparent NM microphone, which can emit thermoacoustic sound and can provide excellent acoustic sensing capabilities. In chapter 4, solution-processable, high-performance flexible alternating-current electroluminescent (ACEL) devices are developed based on high-k nanodielectrics and cross-aligned AgNW transparent electrodes. The solution-processed La-doped barium titanate (BTO:La) nanocuboids are fabricated as high dielectric constant nanodielectrics, which can enhance the dielectric constant of an ACEL devices, enabling the fabrication of high-performance flexible ACEL devices with a lower operating voltage as well as higher brightness. In chapter 5, we fabricated transparent, flexible, and self-healable thermoacoustic loudspeakers based on AgNW/poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit a great self-healing property for the surface damages by means of the dynamic reconstruction of reversible bulky urea bonds in PUHU. In chapter 6, synesthetic bimodal generation of sound and color is demonstrated by stretchable sound-in-display devices consisting of strain-insensitive stretchable AgNW electrodes and field-induced inorganic EL phosphor emissive layers. The stretchable sound-in-display devices show highly robust and reliable EL and sound generating performances that can be repeatedly stretched and released without severe performance degradation because of the use of strain-insensitive AgNW electrodes. Finally, in chapter 7, we summarize this thesis along with the future perspective of flexible/stretchable transparent electrodes that should be considered for next-generation soft electronic and optoelectronic device applications. In this thesis, studies on flexible/stretchable AgNW transparent electrodes and their device applications could be further expanded for diverse soft and wearable optoelectronic and electronic applications such as wearable sensors, healthcare monitoring devices, and human-machine interfaces with better convenience, appearance, and reusability.ope

    Visualization and Computer Graphics on Isotropically Emissive Volumetric Displays

    No full text
    corecore