1,384 research outputs found

    Chaos-modified detrended moving average methodology for monitoring the depth of anaesthesia

    Get PDF
    This paper proposes a new method to monitor the depth of anaesthesia (DoA) based on the EEG signal. This approach firstly uses discrete wavelet transform (DWT) to to remove the spikes and the low frequency noise from raw EEG signals. After de-noising the EEG signals, the modified Hurst parameter is proposed with two new indices (CDoA and CsDoA), to estimate the anaesthesia states of the patients. To reduce the fluctuation of the new DoA index, a combination of Modified Chaos and Modifying Detrended Moving Average is used (MC-DMA). Analyses of variance (ANOVA) for C-MDMA and BIS distributions are presented The results indicate that the C-MDMA distributions at each anaesthesia state level are significantly different and the C-MDMA can distinguish five depths of anaesthesia. Compared with BIS trends, MC-DMA trend is close to BIS trend covering the whole scale from 100 to 0 with a full recording time

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    MultiViz: A Gephi Plugin for Scalable Visualization of Multi-Layer Networks

    Full text link
    The process of visually presenting networks is an effective way to understand entity relationships within the networks since it reveals the overall structure and topology of the network. Real networks are extremely difficult to visualize due to their immense complexity, which includes vast amounts of data, several types of interactions, various subsystems and several levels of connectivity as well as changes over time. This paper introduces the "MultiViz Plugin," a plugin for gephi, an open-source software tool for graph visualization and modification, in order to to visualize complex networks in a multi-layer manner. A collection of settings are availabe through the plugin to transform an existing network into a multi-layered network. The plugin supports several layout algorithms and lets user to choose which property of the network to be used as the layer. The goal of the study is to give the user complete control over how the network is visualized in a multi-layer fashion. We demonstrate the ability of the plugin to visualize multi-layer data using a real-life complex multi-layer datasets

    A longitudinal study of cortical EEG to olfactory stimulation : involving inter- and intra- subjective responses

    Get PDF
    This thesis forms the largest and most systematic study of the topographical EEG response to odour. The evolutionary history of the olfactory sense is briefly presented and its relevance to humans in the present day is considered. This thesis examines the information processing that occurs in this sensory system. The type of processing that the olfactory system utilises at each anatomical stage is discussed. The character of olfactory information that may reach neocortical levels in humans is considered in the light of the technology available to detect such information. The neurogenesis of the EEG is considered, together with questions concerning its postulated functional significance. The empirical work carried out uses the most advanced methodology for this type of study. The large number of odourants and subjects, combined with the longitudinal element, make this the most ambitious study of this nature undertaken. The issues surrounding the analysis and interpretation of EEG data arc fully discussed and the impact of Chaos theory is considered. Five major analysis techniques were used on the data collected, but largely negative findings arc reported. The reasons for the failure of this experimental paradigm are discussed and improvements arc suggested for future work. The major contribution of this thesis lies in its exploration of the assumptions of the EEG response to odour. The thesis notes the lack of a conceptual framework that has hindered progress in the area of the "odour" EEG. Recent developments in neural network theory and Chaos theory are highlighted as possible alternative approaches to the modelling and understanding of the olfactory system

    SaS-BCI: A New Strategy to Predict Image Memorability and use Mental Imagery as a Brain-Based Biometric Authentication

    Get PDF
    Security authentication is one of the most important levels of information security. Nowadays, human biometric techniques are the most secure methods for authentication purposes that cover the problems of older types of authentication like passwords and pins. There are many advantages of recent biometrics in terms of security; however, they still have some disadvantages. Progresses in technology made some specific devices, which make it possible to copy and make a fake human biometric because they are all visible and touchable. According to this matter, there is a need for a new biometric to cover the issues of other types. Brainwave is human data, which uses them as a new type of security authentication that has engaged many researchers. There are some research and experiments, which are investigating and testing EEG signals to find the uniqueness of human brainwave. Some researchers achieved high accuracy rates in this area by applying different signal acquisition techniques, feature extraction and classifications using Brain–Computer Interface (BCI). One of the important parts of any BCI processes is the way that brainwaves could be acquired and recorded. A new Signal Acquisition Strategy is presented in this paper for the process of authorization and authentication of brain signals specifically. This is to predict image memorability from the user’s brain to use mental imagery as a visualization pattern for security authentication. Therefore, users can authenticate themselves with visualizing a specific picture in their minds. In conclusion, we can see that brainwaves can be different according to the mental tasks, which it would make it harder using them for authentication process. There are many signal acquisition strategies and signal processing for brain-based authentication that by using the right methods, a higher level of accuracy rate could be achieved which is suitable for using brain signal as another biometric security authentication

    Behavioral Aspects of Organizational Learning and Adaptation

    Get PDF
    In this paper, I seek to understand the behavioral basis of higher organizational learning and adaption as a teleological dynamic equilibrium process to decipher the underlying psycho-physiological aspects of individual cognitive learning related to organizational adaption. Dynamics of cognitive learning has some differential paths within the neural circuitry which follows certain patterns that leads to individual as well as organized evolution in course of a learning process. I undertake a comparative analysis of human cognitive and behavioral changes and the active mechanisms underlying animal behavior and learning processes to understand the differential patterns of these adaptive changes in these two species. Cognitive behavioral learning processes have certain economic perspectives which help an individual to attain efficiency in workplace adaptation and in learning which however, the individual when being part of an alliance, ember positive influence on the society or organization as a whole. Comparatively, in primates, I review some empirical evidences drawn from chronological studies about cognitive behavioral learning process and adaptation as well as the presence of the capacity of making attributions about mental states, which exists in rudimentary form in chimpanzees and apes. Following this, I apply the outcomes of the findings on different aspects of human cognitive and adaptive behavioral learning-induced evolutionary changes and how human beings are able to exploit the presence of these additive advantages under cluster settings.Animal behavior, cognitive economics, motivational energy, neural adaptation, neuroscience, Organizational learning, organizational adaptation, teleological process

    The myth of the Digital Earth between fragmentation and wholeness

    Get PDF
    Daring predictions of the proximate future can establish shared discursive frameworks, mobilize capital, and steer complex processes. Among the prophetic visions that encouraged and accompanied the development of new communication technologies was the “Digital Earth,” described in a 1998 speech by Al Gore as a high-resolution representation of the planet to share and analyze detailed information about its state. This article traces a genealogy of the Digital Earth as a techno-scientific myth, locating it in a constellation of media futures, arguing that a common subtext of these envisionments consists of a dream of wholeness, an afflatus to overcome perceived fragmentation among humans, and between humans and the Earth
    • 

    corecore