1,437 research outputs found

    Ethical Implications in AI-Powered Trend Research Platforms

    Get PDF
    The manuscript discusses the limitations of applying AI in trend research platforms for the fashion system. This analysis intends to take a position within the emergent research topic of AI. Considering its ethical implications, we explore the opportunities of implementing AI to support trend research from a design-oriented perspective, realising the relationship between fashion and trends, which is central in shaping the future. Examples of AI-powered trend platforms evidence how valuable their insights are for strategic innovation. The analysis focuses on platforms that provide tailored services using AI and expert interpretation. Virtue ethics of technology serves as a useful framework to examine this topic, proposing a new set of virtues that respond to technology’s shaping of behaviour and its disadvantages. The risks of applying AI are many-fold; the consequences perpetuate power imbalances and social inequality. Proposing guidelines for enabling a responsible practice explores how to forge ethics into AI, creating a pluralised practice

    Exploring opportunities and challenges of artificial intelligence and machine learning in higher education institutions

    Get PDF
    The way people travel, organise their time, and acquire information has changed due to information technologies. Artificial intelligence (AI) and machine learning (ML) are mechanisms that evolved from data management and developing processes. Incorporating these mechanisms into business is a trend many different industries, including education, have identified as game-changers. As a result, education platforms and applications are more closely aligned with learners’ needs and knowledge, making the educational process more efficient. Therefore, AI and ML have great potential in e-learning and higher education institutions (HEI). Thus, the article aims to determine its potential and use areas in higher education based on secondary research and document analysis (literature review), content analysis, and primary research (survey). As referent points for this research, multiple academic, scientific, and commercial sources were used to obtain a broader picture of the research subject. Furthermore, the survey was implemented among students in the Republic of Serbia, with 103 respondents to generate data and information on how much knowledge of AI and ML is held by the student population, mainly to understand both opportunities and challenges involved in AI and ML in HEI. The study addresses critical issues, like common knowledge and stance of research bases regarding AI and ML in HEI; best practices regarding usage of AI and ML in HEI; students’ knowledge of AI and ML; and students’ attitudes regarding AI and ML opportunities and challenges in HEI. In statistical considerations, aiming to evaluate if the indicators were considered reflexive and, in this case, belong to the same theoretical dimension, the Correlation Matrix was presented, followed by the Composite Reliability. Finally, the results were evaluated by regression analysis. The results indicated that AI and ML are essential technologies that enhance learning, primarily through students’ skills, collaborative learning in HEI, and an accessible research environment.info:eu-repo/semantics/publishedVersio

    Scanpath modeling and classification with Hidden Markov Models

    Get PDF
    How people look at visual information reveals fundamental information about them; their interests and their states of mind. Previous studies showed that scanpath, i.e., the sequence of eye movements made by an observer exploring a visual stimulus, can be used to infer observer-related (e.g., task at hand) and stimuli-related (e.g., image semantic category) information. However, eye movements are complex signals and many of these studies rely on limited gaze descriptors and bespoke datasets. Here, we provide a turnkey method for scanpath modeling and classification. This method relies on variational hidden Markov models (HMMs) and discriminant analysis (DA). HMMs encapsulate the dynamic and individualistic dimensions of gaze behavior, allowing DA to capture systematic patterns diagnostic of a given class of observers and/or stimuli. We test our approach on two very different datasets. Firstly, we use fixations recorded while viewing 800 static natural scene images, and infer an observer-related characteristic: the task at hand. We achieve an average of 55.9% correct classification rate (chance = 33%). We show that correct classification rates positively correlate with the number of salient regions present in the stimuli. Secondly, we use eye positions recorded while viewing 15 conversational videos, and infer a stimulus-related characteristic: the presence or absence of original soundtrack. We achieve an average 81.2% correct classification rate (chance = 50%). HMMs allow to integrate bottom-up, top-down, and oculomotor influences into a single model of gaze behavior. This synergistic approach between behavior and machine learning will open new avenues for simple quantification of gazing behavior. We release SMAC with HMM, a Matlab toolbox freely available to the community under an open-source license agreement.published_or_final_versio

    We Wonder If They Mind. An Empirical Inquiry into the Narratological Function of Mind-Wandering in Readers of Literary Texts

    Get PDF
    The study investigates the content and triggers of mind-wandering (MW) in readers of fictional texts. It asks whether readers’ MW is productive (text-related) or unproductive (text-unrelated). Methodologically, it bridges the gap between narratological and data-driven approaches by utilising a sentence-by-sentence, self-paced reading paradigm combined with thought probes in the reading of an excerpt of A. L. Kennedy’s “Baby Blue”. Results show that the contents of MW can be linked to text properties. We validated the role of self-reference in MW and found prediction errors to be triggers of MW. Results also indicate that the content of MW often travels along the lines of the text at hand and can thus be viewed as productive and integral to interpretation

    Deep Reinforcement Learning Approaches for Technology Enhanced Learning

    Get PDF
    Artificial Intelligence (AI) has advanced significantly in recent years, transforming various industries and domains. Its ability to extract patterns and insights from large volumes of data has revolutionised areas such as image recognition, natural language processing, and autonomous systems. As AI systems become increasingly integrated into daily human life, there is a growing need for meaningful collaboration and mutual engagement between humans and AI, known as Human-AI Collaboration. This collaboration involves combining AI with human workflows to achieve shared objectives. In the current educational landscape, the integration of AI methods in Technology Enhanced Learning (TEL) has become crucial for providing high-quality education and facilitating lifelong learning. Human-AI Collaboration also plays a vital role in the field of Technology Enhanced Learning (TEL), particularly in Intelligent Tutoring Systems (ITS). The COVID-19 pandemic has further emphasised the need for effective educational technologies to support remote learning and bridge the gap between traditional classrooms and online platforms. To maximise the performance of ITS while minimising the input and interaction required from students, it is essential to design collaborative systems that effectively leverage the capabilities of AI and foster effective collaboration between students and ITS. However, there are several challenges that need to be addressed in this context. One challenge is the lack of clear guidance on designing and building user-friendly systems that facilitate collaboration between humans and AI. This challenge is relevant not only to education researchers but also to Human-Computer Interaction (HCI) researchers and developers. Another challenge is the scarcity of interaction data in the early stages of ITS development, which hampers the accurate modelling of students' knowledge states and learning trajectories, known as the cold start problem. Moreover, the effectiveness of Intelligent Tutoring Systems (ITS) in delivering personalised instruction is hindered by the limitations of existing Knowledge Tracing (KT) models, which often struggle to provide accurate predictions. Therefore, addressing these challenges is crucial for enhancing the collaborative process between humans and AI in the development of ITS. This thesis aims to address these challenges and improve the collaborative process between students and ITS in TEL. It proposes innovative approaches to generate simulated student behavioural data and enhance the performance of KT models. The thesis starts with a comprehensive survey of human-AI collaborative systems, identifying key challenges and opportunities. It then presents a structured framework for the student-ITS collaborative process, providing insights into designing user-friendly and efficient systems. To overcome the challenge of data scarcity in ITS development, the thesis proposes two student modelling approaches: Sim-GAIL and SimStu. SimStu leverages a deep learning method, the Decision Transformer, to simulate student interactions and enhance ITS training. Sim-GAIL utilises a reinforcement learning method, Generative Adversarial Imitation Learning (GAIL), to generate high-fidelity and diverse simulated student behavioural data, addressing the cold start problem in ITS training. Furthermore, the thesis focuses on improving the performance of KT models. It introduces the MLFBKT model, which integrates multiple features and mines latent relations in student interaction data, aiming to improve the accuracy and efficiency of KT models. Additionally, the thesis proposes the LBKT model, which combines the strengths of the BERT model and LSTM to process long sequence data in KT models effectively. Overall, this thesis contributes to the field of Human-AI collaboration in TEL by addressing key challenges and proposing innovative approaches to enhance ITS training and KT model performance. The findings have the potential to improve the learning experiences and outcomes of students in educational settings
    • 

    corecore