1,618 research outputs found

    The European Flood Alert System – Part 1: Concept and development

    Get PDF
    International audienceThis paper presents the development of the European Flood Alert System (EFAS), which aims at increasing preparedness for floods in trans-national European river basins by providing local water authorities with medium-range and probabilistic flood forecasting information 3 to 10 days in advance. The EFAS research project started in 2003 with the development of a prototype at the European Commission Joint Research Centre (JRC), in close collaboration with the national hydrological and meteorological services. The prototype covers the whole of Europe on a 5 km grid. In parallel, different high-resolution data sets have been collected for the Elbe and Danube river basins, allowing the potential of the system under optimum conditions and on a higher resolution, to be assessed. Flood warning lead-times of 3–10 days are achieved through the incorporation of medium-range weather forecasts from the Deutscher Wetterdienst (DWD) and the European Centre for Medium-Range Weather Forecasts (ECMWF), comprising a full set of 51 probabilistic forecasts from the Ensemble Prediction System (EPS) provided by ECMWF. The ensemble of different hydrographs is analysed and combined to produce early flood warning information, which is disseminated to the hydrological services that have agreed to participate in the development of the system. In Part 1 of this paper, the scientific approach adopted in development of the system is presented. The rational of the project, the system's set-up, its underlying components, basic principles, and products, are described. In Part 2, results of a detailed statistical analysis of the performance of the system are shown, with regard to both probabilistic and deterministic forecast

    The European Flood Alert System - Part 1: Concept and Development

    Get PDF
    This paper presents the development of the European Flood Alert System (EFAS), which aims at increasing preparedness for floods in trans-national European river basins by providing local water authorities with medium-range and probabilistic flood forecasting information 3 to 10 days in advance. The EFAS research project started in 2003 with the development of a prototype at the European Commission Joint Research Centre (JRC), in close collaboration with the national hydrological and meteorological services. The prototype covers the whole of Europe on a 5 km grid. In parallel, different high-resolution data sets have been collected for the Elbe and Danube river basins, allowing the potential of the system under optimum conditions and on a higher resolution, to be assessed. Flood warning lead-times of 3-10 days are achieved through the incorporation of medium-range weather forecasts from the Deutscher Wetterdienst (DWD) and the European Centre for Medium-Range Weather Forecasts (ECMWF), comprising a full set of 51 probabilistic forecasts from the Ensemble Prediction System (EPS) provided by ECMWF. The ensemble of different hydrographs is analysed and combined to produce early flood warning information, which is disseminated to the hydrological services that have agreed to participate in the development of the system. In Part I of this paper, the scientific approach adopted in development of the system is presented. The rational of the project, the system¿s set-up, its underlying components, basic principles, and products, are described. In Part II, results of a detailed statistical analysis of the performance of the system are shown, with regard to both probabilistic and deterministic forecastsJRC.H.7-Land management and natural hazard

    The European Flood Alert System - Part I: Concept and Development

    Get PDF
    Abstract This paper presents the development of the European Flood Alert System (EFAS), which aims at increasing preparedness for floods in trans-national European river basins by providing local water authorities with medium-range and probabilistic flood forecasting information 3 to 10 days in advance. The EFAS research project started in 2003 with the development of a prototype at the European Commission Joint Research Centre (JRC), in close collaboration with the national hydrological and meteorological services. The prototype covers the whole of Europe on a 5 km grid. In parallel, different high-resolution data sets have been collected for the Elbe and Danube river basins, allowing the potential of the system under optimum conditions and on a higher resolution to be assessed. Flood warning lead-times of 3-10 days are achieved through the incorporation of medium-range weather forecasts from the Deutscher Wetterdienst (DWD) and the European Centre for Medium-Range Weather Forecasts (ECMWF), comprising a full set of 51 probabilistic forecasts from the Ensemble Prediction System (EPS) provided by ECMWF. The ensemble of different hydrographs is analysed and combined to produce early flood warning information, which is disseminated to the hydrological services that have agreed to participate in the development of the system. In Part I of this paper, the scientific approach adopted in the development of the system is presented. The rational of the project, the system¿s set-up, its underlying components, basic principles and products are described. In Part II, results of a detailed statistical analysis of the performance of the system are shown, with regard to both probabilistic and deterministic forecasts.JRC.H.7-Land management and natural hazard

    Correcting the radar rainfall forcing of a hydrological model with data assimilation: application to flood forecasting in the Lez Catchment in Southern France

    Get PDF
    The present study explores the application of a data assimilation (DA) procedure to correct the radar rain- fall inputs of an event-based, distributed, parsimonious hy- drological model. An extended Kalman filter algorithm was built on top of a rainfall-runoff model in order to assimilate discharge observations at the catchment outlet. This work fo- cuses primarily on the uncertainty in the rainfall data and considers this as the principal source of error in the sim- ulated discharges, neglecting simplifications in the hydro- logical model structure and poor knowledge of catchment physics. The study site is the 114 km2 Lez catchment near Montpellier, France. This catchment is subject to heavy oro- graphic rainfall and characterised by a karstic geology, lead- ing to flash flooding events. The hydrological model uses a derived version of the SCS method, combined with a Lag and Route transfer function. Because the radar rainfall in- put to the model depends on geographical features and cloud structures, it is particularly uncertain and results in signifi- cant errors in the simulated discharges. This study seeks to demonstrate that a simple DA algorithm is capable of ren- dering radar rainfall suitable for hydrological forecasting. To test this hypothesis, the DA analysis was applied to estimate a constant hyetograph correction to each of 19 flood events. The analysis was carried in two different modes: by assimi- lating observations at all available time steps, referred to here as reanalysis mode, and by using only observations up to 3 h before the flood peak to mimic an operational environment, referred to as pseudo-forecast mode. In reanalysis mode, the resulting correction of the radar rainfall data was then com- pared to the mean field bias (MFB), a corrective coefficient determined using rain gauge measurements. It was shown that the radar rainfall corrected using DA leads to improved discharge simulations and Nash-Sutcliffe efficiency criteria compared to the MFB correction. In pseudo-forecast mode, the reduction of the uncertainty in the rainfall data leads to a reduction of the error in the simulated discharge, but un- certainty from the model parameterisation diminishes data assimilation efficiency. While the DA algorithm used is this study is effective in correcting uncertain radar rainfall, model uncertainty remains an important challenge for flood fore- casting within the Lez catchment

    A vision for hydrological prediction

    Get PDF
    IMproving PRedictions and management of hydrological EXtremes (IMPREX) was a European Union Horizon 2020 project that ran from September 2015 to September 2019. Its aim was to improve society’s ability to anticipate and respond to future extreme hydrological events in Europe across a variety of uses in the water-related sectors (flood forecasting, drought risk assessment, agriculture, navigation, hydropower, and water supply utilities). Through the engagement with stakeholders and continuous feedback between model outputs and water applications, progress was achieved in better understanding the way hydrological predictions can be useful to (and operationally incorporated into) problem solving in the water sector. The work and discussions carried out during the project nurtured further reflections towards a common vision for hydrological prediction. In this article, we summarize the main findings of the IMPREX project within a broader overview of hydrological prediction, providing a vision for improving such predictions. In so doing, we firstly present a synopsis of hydrological and weather forecasting, with a focus on medium-range to seasonal scales of prediction for increased preparedness. Second, the lessons learnt from IMPREX are discussed. The key findings are the gaps highlighted in the global observing system of the hydrological cycle, the degree of accuracy of hydrological models and the techniques of post-processing to correct biases, the origin of seasonal hydrological skill in Europe, and user requirements of hydrometeorological forecasts to ensure their appropriate use in decision-making models and practices. Lastly, a vision for how to improve these forecast systems/products in the future is expounded and these include advancing numerical weather and hydrological models, improved earth monitoring, and more frequent interaction between forecasters and users to tailor the forecasts to applications. We conclude that if these improvements can be implemented in the coming years, earth system and hydrological modelling will become more skilful, thus leading to socioeconomic benefits for the citizens of Europe and beyond

    The monetary benefit of early flood warnings in Europe

    Get PDF
    Effective disaster risk management relies on science-based solutions to close the gap between prevention and preparedness measures. The consultation on the United Nations post-2015 framework for disaster risk reduction highlights the need for cross-border early warning systems to strengthen the preparedness phases of disaster risk management, in order to save lives and property and reduce the overall impact of severe events. Continental and global scale flood forecasting systems provide vital early flood warning information to national and international civil protection authorities, who can use this information to make decisions on how to prepare for upcoming floods. Here the potential monetary benefits of early flood warnings are estimated based on the forecasts of the continental-scale European Flood Awareness System (EFAS) using existing flood damage cost information and calculations of potential avoided flood damages. The benefits are of the order of 400 Euro for every 1 Euro invested. A sensitivity analysis is performed in order to test the uncertainty in the method and develop an envelope of potential monetary benefits of EFAS warnings. The results provide clear evidence that there is likely a substantial monetary benefit in this cross-border continental-scale flood early warning system. This supports the wider drive to implement early warning systems at the continental or global scale to improve our resilience to natural hazards
    corecore