5,027 research outputs found

    Biosignal and context monitoring: Distributed multimedia applications of body area networks in healthcare

    Get PDF
    We are investigating the use of Body Area Networks (BANs), wearable sensors and wireless communications for measuring, processing, transmission, interpretation and display of biosignals. The goal is to provide telemonitoring and teletreatment services for patients. The remote health professional can view a multimedia display which includes graphical and numerical representation of patients’ biosignals. Addition of feedback-control enables teletreatment services; teletreatment can be delivered to the patient via multiple modalities including tactile, text, auditory and visual. We describe the health BAN and a generic mobile health service platform and two context aware applications. The epilepsy application illustrates processing and interpretation of multi-source, multimedia BAN data. The chronic pain application illustrates multi-modal feedback and treatment, with patients able to view their own biosignals on their handheld device

    From Sensor to Observation Web with Environmental Enablers in the Future Internet

    Get PDF
    This paper outlines the grand challenges in global sustainability research and the objectives of the FP7 Future Internet PPP program within the Digital Agenda for Europe. Large user communities are generating significant amounts of valuable environmental observations at local and regional scales using the devices and services of the Future Internet. These communities’ environmental observations represent a wealth of information which is currently hardly used or used only in isolation and therefore in need of integration with other information sources. Indeed, this very integration will lead to a paradigm shift from a mere Sensor Web to an Observation Web with semantically enriched content emanating from sensors, environmental simulations and citizens. The paper also describes the research challenges to realize the Observation Web and the associated environmental enablers for the Future Internet. Such an environmental enabler could for instance be an electronic sensing device, a web-service application, or even a social networking group affording or facilitating the capability of the Future Internet applications to consume, produce, and use environmental observations in cross-domain applications. The term ?envirofied? Future Internet is coined to describe this overall target that forms a cornerstone of work in the Environmental Usage Area within the Future Internet PPP program. Relevant trends described in the paper are the usage of ubiquitous sensors (anywhere), the provision and generation of information by citizens, and the convergence of real and virtual realities to convey understanding of environmental observations. The paper addresses the technical challenges in the Environmental Usage Area and the need for designing multi-style service oriented architecture. Key topics are the mapping of requirements to capabilities, providing scalability and robustness with implementing context aware information retrieval. Another essential research topic is handling data fusion and model based computation, and the related propagation of information uncertainty. Approaches to security, standardization and harmonization, all essential for sustainable solutions, are summarized from the perspective of the Environmental Usage Area. The paper concludes with an overview of emerging, high impact applications in the environmental areas concerning land ecosystems (biodiversity), air quality (atmospheric conditions) and water ecosystems (marine asset management)

    Assistive technology design and development for acceptable robotics companions for ageing years

    Get PDF
    © 2013 Farshid Amirabdollahian et al., licensee Versita Sp. z o. o. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs license, which means that the text may be used for non-commercial purposes, provided credit is given to the author.A new stream of research and development responds to changes in life expectancy across the world. It includes technologies which enhance well-being of individuals, specifically for older people. The ACCOMPANY project focuses on home companion technologies and issues surrounding technology development for assistive purposes. The project responds to some overlooked aspects of technology design, divided into multiple areas such as empathic and social human-robot interaction, robot learning and memory visualisation, and monitoring persons’ activities at home. To bring these aspects together, a dedicated task is identified to ensure technological integration of these multiple approaches on an existing robotic platform, Care-O-Bot®3 in the context of a smart-home environment utilising a multitude of sensor arrays. Formative and summative evaluation cycles are then used to assess the emerging prototype towards identifying acceptable behaviours and roles for the robot, for example role as a butler or a trainer, while also comparing user requirements to achieved progress. In a novel approach, the project considers ethical concerns and by highlighting principles such as autonomy, independence, enablement, safety and privacy, it embarks on providing a discussion medium where user views on these principles and the existing tension between some of these principles, for example tension between privacy and autonomy over safety, can be captured and considered in design cycles and throughout project developmentsPeer reviewe

    Conversational Sensing

    Full text link
    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it possible to represent information fusion and situational awareness as a conversational process among actors - human and machine agents - at or near the tactical edges of a network. Motivated by use cases in the domain of security, policing and emergency response, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled natural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a flow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both trained and untrained sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by management and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security
    corecore