49 research outputs found

    Light-LOAM: A Lightweight LiDAR Odometry and Mapping based on Graph-Matching

    Full text link
    Simultaneous Localization and Mapping (SLAM) plays an important role in robot autonomy. Reliability and efficiency are the two most valued features for applying SLAM in robot applications. In this paper, we consider achieving a reliable LiDAR-based SLAM function in computation-limited platforms, such as quadrotor UAVs based on graph-based point cloud association. First, contrary to most works selecting salient features for point cloud registration, we propose a non-conspicuous feature selection strategy for reliability and robustness purposes. Then a two-stage correspondence selection method is used to register the point cloud, which includes a KD-tree-based coarse matching followed by a graph-based matching method that uses geometric consistency to vote out incorrect correspondences. Additionally, we propose an odometry approach where the weight optimizations are guided by vote results from the aforementioned geometric consistency graph. In this way, the optimization of LiDAR odometry rapidly converges and evaluates a fairly accurate transformation resulting in the back-end module efficiently finishing the mapping task. Finally, we evaluate our proposed framework on the KITTI odometry dataset and real-world environments. Experiments show that our SLAM system achieves a comparative level or higher level of accuracy with more balanced computation efficiency compared with the mainstream LiDAR-based SLAM solutions

    NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.Peer ReviewedAgha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., Ginting, M. F., Ebadi, K., Anderson, M., Pailevanian, T., Terry, E., Wolf, M., Tagliabue, A., Vaquero, T. S., Palieri, M., Tepsuporn, S., Chang, Y., Kalantari, A., Chavez, F., Lopez, B., Funabiki, N., Miles, G., Touma, T., Buscicchio, A., Tordesillas, J., Alatur, N., Nash, J., Walsh, W., Jung, S., Lee, H., Kanellakis, C., Mayo, J., Harper, S., Kaufmann, M., Dixit, A., Correa, G. J., Lee, C., Gao, J., Merewether, G., Maldonado-Contreras, J., Salhotra, G., Da Silva, M. S., Ramtoula, B., Fakoorian, S., Hatteland, A., Kim, T., Bartlett, T., Stephens, A., Kim, L., Bergh, C., Heiden, E., Lew, T., Cauligi, A., Heywood, T., Kramer, A., Leopold, H. A., Melikyan, H., Choi, H. C., Daftry, S., Toupet, O., Wee, I., Thakur, A., Feras, M., Beltrame, G., Nikolakopoulos, G., Shim, D., Carlone, L., & Burdick, JPostprint (published version

    Seamless Navigation, 3D Reconstruction, Thermographic and Semantic Mapping for Building Inspection

    Get PDF
    We present a workflow for seamless real-time navigation and 3D thermal mapping in combined indoor and outdoor environments in a global reference frame. The automated workflow and partly real-time capabilities are of special interest for inspection tasks and also for other time-critical applications. We use a hand-held integrated positioning system (IPS), which is a real-time capable visual-aided inertial navigation technology, and augment it with an additional passive thermal infrared camera and global referencing capabilities. The global reference is realized through surveyed optical markers (AprilTags). Due to the sensor data’s fusion of the stereo camera and the thermal images, the resulting georeferenced 3D point cloud is enriched with thermal intensity values. A challenging calibration approach is used to geometrically calibrate and pixel-co-register the trifocal camera system. By fusing the terrestrial dataset with additional geographic information from an unmanned aerial vehicle, we gain a complete building hull point cloud and automatically reconstruct a semantic 3D model. A single-family house with surroundings in the village of Morschenich near the city of Jülich (German federal state North Rhine-Westphalia) was used as a test site to demonstrate our workflow. The presented work is a step towards automated building information modeling

    Visual Perception System for Aerial Manipulation: Methods and Implementations

    Get PDF
    La tecnología se evoluciona a gran velocidad y los sistemas autónomos están empezado a ser una realidad. Las compañías están demandando, cada vez más, soluciones robotizadas para mejorar la eficiencia de sus operaciones. Este también es el caso de los robots aéreos. Su capacidad única de moverse libremente por el aire los hace excelentes para muchas tareas que son tediosas o incluso peligrosas para operadores humanos. Hoy en día, la gran cantidad de sensores y drones comerciales los hace soluciones muy tentadoras. Sin embargo, todavía se requieren grandes esfuerzos de obra humana para customizarlos para cada tarea debido a la gran cantidad de posibles entornos, robots y misiones. Los investigadores diseñan diferentes algoritmos de visión, hardware y sensores para afrontar las diferentes tareas. Actualmente, el campo de la robótica manipuladora aérea está emergiendo con el objetivo de extender la cantidad de aplicaciones que estos pueden realizar. Estas pueden ser entre otras, inspección, mantenimiento o incluso operar válvulas u otras máquinas. Esta tesis presenta un sistema de manipulación aérea y un conjunto de algoritmos de percepción para la automatización de las tareas de manipulación aérea. El diseño completo del sistema es presentado y una serie de frameworks son presentados para facilitar el desarrollo de este tipo de operaciones. En primer lugar, la investigación relacionada con el análisis de objetos para manipulación y planificación de agarre considerando diferentes modelos de objetos es presentado. Dependiendo de estos modelos de objeto, se muestran diferentes algoritmos actuales de análisis de agarre y algoritmos de planificación para manipuladores simples y manipuladores duales. En Segundo lugar, el desarrollo de algoritmos de percepción para detección de objetos y estimación de su posicione es presentado. Estos permiten al sistema identificar objetos de cualquier tipo en cualquier escena para localizarlos para efectuar las tareas de manipulación. Estos algoritmos calculan la información necesaria para los análisis de manipulación descritos anteriormente. En tercer lugar. Se presentan algoritmos de visión para localizar el robot en el entorno al mismo tiempo que se elabora un mapa local, el cual es beneficioso para las tareas de manipulación. Estos mapas se enriquecen con información semántica obtenida en los algoritmos de detección. Por último, se presenta el desarrollo del hardware relacionado con la plataforma aérea, el cual incluye unos manipuladores de bajo peso y la invención de una herramienta para realizar tareas de contacto con superficies rígidas que sirve de estimador de la posición del robot. Todas las técnicas presentadas en esta tesis han sido validadas con extensiva experimentación en plataformas reales.Technology is growing fast, and autonomous systems are becoming a reality. Companies are increasingly demanding robotized solutions to improve the efficiency of their operations. It is also the case for aerial robots. Their unique capability of moving freely in the space makes them suitable for many tasks that are tedious and even dangerous for human operators. Nowadays, the vast amount of sensors and commercial drones makes them highly appealing. However, it is still required a strong manual effort to customize the existing solutions to each particular task due to the number of possible environments, robot designs and missions. Different vision algorithms, hardware devices and sensor setups are usually designed by researchers to tackle specific tasks. Currently, aerial manipulation is being intensively studied to allow aerial robots to extend the number of applications. These could be inspection, maintenance, or even operating valves or other machines. This thesis presents an aerial manipulation system and a set of perception algorithms for the automation aerial manipulation tasks. The complete design of the system is presented and modular frameworks are shown to facilitate the development of these kind of operations. At first, the research about object analysis for manipulation and grasp planning considering different object models is presented. Depend on the model of the objects, different state of art grasping analysis are reviewed and planning algorithms for both single and dual manipulators are shown. Secondly, the development of perception algorithms for object detection and pose estimation are presented. They allows the system to identify many kind of objects in any scene and locate them to perform manipulation tasks. These algorithms produce the necessary information for the manipulation analysis described in the previous paragraph. Thirdly, it is presented how to use vision to localize the robot in the environment. At the same time, local maps are created which can be beneficial for the manipulation tasks. These maps are are enhanced with semantic information from the perception algorithm mentioned above. At last, the thesis presents the development of the hardware of the aerial platform which includes the lightweight manipulators and the invention of a novel tool that allows the aerial robot to operate in contact with static objects. All the techniques presented in this thesis have been validated throughout extensive experimentation with real aerial robotic platforms

    Enhanced vision-based localization and control for navigation of non-holonomic omnidirectional mobile robots in GPS-denied environments

    Get PDF
    New Zealand’s economy relies on primary production to a great extent, where use of the technological advances can have a significant impact on the productivity. Robotics and automation can play a key role in increasing productivity in primary sector, leading to a boost in national economy. This thesis investigates novel methodologies for design, control, and navigation of a mobile robotic platform, aimed for field service applications, specifically in agricultural environments such as orchards to automate the agricultural tasks. The design process of this robotic platform as a non-holonomic omnidirectional mobile robot, includes an innovative integrated application of CAD, CAM, CAE, and RP for development and manufacturing of the platform. Robot Operating System (ROS) is employed for the optimum embedded software system design and development to enable control, sensing, and navigation of the platform. 3D modelling and simulation of the robotic system is performed through interfacing ROS and Gazebo simulator, aiming for off-line programming, optimal control system design, and system performance analysis. Gazebo simulator provides 3D simulation of the robotic system, sensors, and control interfaces. It also enables simulation of the world environment, allowing the simulated robot to operate in a modelled environment. The model based controller for kinematic control of the non-holonomic omnidirectional platform is tested and validated through experimental results obtained from the simulated and the physical robot. The challenges of the kinematic model based controller including the mathematical and kinematic singularities are discussed and the solution to enable an optimal kinematic model based controller is presented. The kinematic singularity associated with the non-holonomic omnidirectional robots is solved using a novel fuzzy logic based approach. The proposed approach is successfully validated and tested through the simulation and experimental results. Development of a reliable localization system is aimed to enable navigation of the platform in GPS-denied environments such as orchards. For this aim, stereo visual odometry (SVO) is considered as the core of the non-GPS localization system. Challenges of SVO are introduced and the SVO accumulative drift is considered as the main challenge to overcome. SVO drift is identified in form of rotational and translational drift. Sensor fusion is employed to improve the SVO rotational drift through the integration of IMU and SVO. A novel machine learning approach is proposed to improve the SVO translational drift using Neural-Fuzzy system and RBF neural network. The machine learning system is formulated as a drift estimator for each image frame, then correction is applied at that frame to avoid the accumulation of the drift over time. The experimental results and analyses are presented to validate the effectiveness of the methodology in improving the SVO accuracy. An enhanced SVO is aimed through combination of sensor fusion and machine learning methods to improve the SVO rotational and translational drifts. Furthermore, to achieve a robust non-GPS localization system for the platform, sensor fusion of the wheel odometry and the enhanced SVO is performed to increase the accuracy of the overall system, as well as the robustness of the non-GPS localization system. The experimental results and analyses are conducted to support the methodology

    Robust convex optimisation techniques for autonomous vehicle vision-based navigation

    Get PDF
    This thesis investigates new convex optimisation techniques for motion and pose estimation. Numerous computer vision problems can be formulated as optimisation problems. These optimisation problems are generally solved via linear techniques using the singular value decomposition or iterative methods under an L2 norm minimisation. Linear techniques have the advantage of offering a closed-form solution that is simple to implement. The quantity being minimised is, however, not geometrically or statistically meaningful. Conversely, L2 algorithms rely on iterative estimation, where a cost function is minimised using algorithms such as Levenberg-Marquardt, Gauss-Newton, gradient descent or conjugate gradient. The cost functions involved are geometrically interpretable and can statistically be optimal under an assumption of Gaussian noise. However, in addition to their sensitivity to initial conditions, these algorithms are often slow and bear a high probability of getting trapped in a local minimum or producing infeasible solutions, even for small noise levels. In light of the above, in this thesis we focus on developing new techniques for finding solutions via a convex optimisation framework that are globally optimal. Presently convex optimisation techniques in motion estimation have revealed enormous advantages. Indeed, convex optimisation ensures getting a global minimum, and the cost function is geometrically meaningful. Moreover, robust optimisation is a recent approach for optimisation under uncertain data. In recent years the need to cope with uncertain data has become especially acute, particularly where real-world applications are concerned. In such circumstances, robust optimisation aims to recover an optimal solution whose feasibility must be guaranteed for any realisation of the uncertain data. Although many researchers avoid uncertainty due to the added complexity in constructing a robust optimisation model and to lack of knowledge as to the nature of these uncertainties, and especially their propagation, in this thesis robust convex optimisation, while estimating the uncertainties at every step is investigated for the motion estimation problem. First, a solution using convex optimisation coupled to the recursive least squares (RLS) algorithm and the robust H filter is developed for motion estimation. In another solution, uncertainties and their propagation are incorporated in a robust L convex optimisation framework for monocular visual motion estimation. In this solution, robust least squares is combined with a second order cone program (SOCP). A technique to improve the accuracy and the robustness of the fundamental matrix is also investigated in this thesis. This technique uses the covariance intersection approach to fuse feature location uncertainties, which leads to more consistent motion estimates. Loop-closure detection is crucial in improving the robustness of navigation algorithms. In practice, after long navigation in an unknown environment, detecting that a vehicle is in a location it has previously visited gives the opportunity to increase the accuracy and consistency of the estimate. In this context, we have developed an efficient appearance-based method for visual loop-closure detection based on the combination of a Gaussian mixture model with the KD-tree data structure. Deploying this technique for loop-closure detection, a robust L convex posegraph optimisation solution for unmanned aerial vehicle (UAVs) monocular motion estimation is introduced as well. In the literature, most proposed solutions formulate the pose-graph optimisation as a least-squares problem by minimising a cost function using iterative methods. In this work, robust convex optimisation under the L norm is adopted, which efficiently corrects the UAV’s pose after loop-closure detection. To round out the work in this thesis, a system for cooperative monocular visual motion estimation with multiple aerial vehicles is proposed. The cooperative motion estimation employs state-of-the-art approaches for optimisation, individual motion estimation and registration. Three-view geometry algorithms in a convex optimisation framework are deployed on board the monocular vision system for each vehicle. In addition, vehicle-to-vehicle relative pose estimation is performed with a novel robust registration solution in a global optimisation framework. In parallel, and as a complementary solution for the relative pose, a robust non-linear H solution is designed as well to fuse measurements from the UAVs’ on-board inertial sensors with the visual estimates. The suggested contributions have been exhaustively evaluated over a number of real-image data experiments in the laboratory using monocular vision systems and range imaging devices. In this thesis, we propose several solutions towards the goal of robust visual motion estimation using convex optimisation. We show that the convex optimisation framework may be extended to include uncertainty information, to achieve robust and optimal solutions. We observed that convex optimisation is a practical and very appealing alternative to linear techniques and iterative methods

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Get PDF
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local point clouds are matched to a global tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 200 m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12 cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5 m/s. The accuracy and speed limit are realistic during forest operations.</p
    corecore