1,816 research outputs found

    Face recognition in the wild.

    Get PDF
    Research in face recognition deals with problems related to Age, Pose, Illumination and Expression (A-PIE), and seeks approaches that are invariant to these factors. Video images add a temporal aspect to the image acquisition process. Another degree of complexity, above and beyond A-PIE recognition, occurs when multiple pieces of information are known about people, which may be distorted, partially occluded, or disguised, and when the imaging conditions are totally unorthodox! A-PIE recognition in these circumstances becomes really “wild” and therefore, Face Recognition in the Wild has emerged as a field of research in the past few years. Its main purpose is to challenge constrained approaches of automatic face recognition, emulating some of the virtues of the Human Visual System (HVS) which is very tolerant to age, occlusion and distortions in the imaging process. HVS also integrates information about individuals and adds contexts together to recognize people within an activity or behavior. Machine vision has a very long road to emulate HVS, but face recognition in the wild, using the computer, is a road to perform face recognition in that path. In this thesis, Face Recognition in the Wild is defined as unconstrained face recognition under A-PIE+; the (+) connotes any alterations to the design scenario of the face recognition system. This thesis evaluates the Biometric Optical Surveillance System (BOSS) developed at the CVIP Lab, using low resolution imaging sensors. Specifically, the thesis tests the BOSS using cell phone cameras, and examines the potential of facial biometrics on smart portable devices like iPhone, iPads, and Tablets. For quantitative evaluation, the thesis focused on a specific testing scenario of BOSS software using iPhone 4 cell phones and a laptop. Testing was carried out indoor, at the CVIP Lab, using 21 subjects at distances of 5, 10 and 15 feet, with three poses, two expressions and two illumination levels. The three steps (detection, representation and matching) of the BOSS system were tested in this imaging scenario. False positives in facial detection increased with distances and with pose angles above ± 15°. The overall identification rate (face detection at confidence levels above 80%) also degraded with distances, pose, and expressions. The indoor lighting added challenges also, by inducing shadows which affected the image quality and the overall performance of the system. While this limited number of subjects and somewhat constrained imaging environment does not fully support a “wild” imaging scenario, it did provide a deep insight on the issues with automatic face recognition. The recognition rate curves demonstrate the limits of low-resolution cameras for face recognition at a distance (FRAD), yet it also provides a plausible defense for possible A-PIE face recognition on portable devices

    A Survey on Emotion Recognition for Human Robot Interaction

    Get PDF
    With the recent developments of technology and the advances in artificial intelligent and machine learning techniques, it becomes possible for the robot to acquire and show the emotions as a part of Human-Robot Interaction (HRI). An emotional robot can recognize the emotional states of humans so that it will be able to interact more naturally with its human counterpart in different environments. In this article, a survey on emotion recognition for HRI systems has been presented. The survey aims to achieve two objectives. Firstly, it aims to discuss the main challenges that face researchers when building emotional HRI systems. Secondly, it seeks to identify sensing channels that can be used to detect emotions and provides a literature review about recent researches published within each channel, along with the used methodologies and achieved results. Finally, some of the existing emotion recognition issues and recommendations for future works have been outlined

    Handgun detection using combined human pose and weapon appearance

    Get PDF
    Closed-circuit television (CCTV) systems are essential nowadays to prevent security threats or dangerous situations, in which early detection is crucial. Novel deep learning-based methods have allowed to develop automatic weapon detectors with promising results. However, these approaches are mainly based on visual weapon appearance only. For handguns, body pose may be a useful cue, especially in cases where the gun is barely visible. In this work, a novel method is proposed to combine, in a single architecture, both weapon appearance and human pose information. First, pose keypoints are estimated to extract hand regions and generate binary pose images, which are the model inputs. Then, each input is processed in different subnetworks and combined to produce the handgun bounding box. Results obtained show that the combined model improves the handgun detection state of the art, achieving from 4.23 to 18.9 AP points more than the best previous approach.Comment: 17 pages, 18 figure
    corecore