4,514 research outputs found

    Visual tracking for the recovery of multiple interacting plant root systems from X-ray μCT images

    Get PDF
    We propose a visual object tracking framework for the extraction of multiple interacting plant root systems from three-dimensional X-ray micro computed tomography images of plants grown in soil. Our method is based on a level set framework guided by a greyscale intensity distribution model to identify object boundaries in image cross-sections. Root objects are followed through the data volume, while updating the tracker's appearance models to adapt to changing intensity values. In the presence of multiple root systems, multiple trackers can be used, but need to distinguish target objects from one another in order to correctly associate roots with their originating plants. Since root objects are expected to exhibit similar greyscale intensity distributions, shape information is used to constrain the evolving level set interfaces in order to lock trackers to their correct targets. The proposed method is tested on root systems of wheat plants grown in soil

    Extracting multiple interacting root systems using X-ray micro computed tomography

    Get PDF
    Root system interaction and competition for resources is an active research area that contributes to our understanding of roots’ perception and reaction to environmental conditions. Recent research has shown this complex suite of processes can now be observed in a natural environment (i.e. soil) through the use of X-ray micro Computed Tomography (µCT), which allows non-destructive analysis of plant root systems. Due to their similar X-ray attenuation coefficients and densities, the roots of different plants appear as similar greyscale intensity values in µCT image data. Unless they are manually and carefully traced, it has previously not been possible to automatically label and separate different root systems grown in the same soil environment. We present a technique, based on a visual tracking approach, which exploits knowledge of the shape of root cross-sections to automatically recover 3D descriptions of multiple, interacting root architectures growing in soil from X-ray µCT data. The method was evaluated on both simulated root data and real images of two interacting winter wheat Cordiale (Triticumaestivum L.) plants grown in a single soil column, demonstrating that it is possible to automatically segment different root systems from within the same soil sample. This work supports the automatic exploration of supportive and competitive foraging behaviour of plant root systems in natural soil environments

    Segmenting root systems in X-ray computed tomography images using level sets

    Full text link
    The segmentation of plant roots from soil and other growing media in X-ray computed tomography images is needed to effectively study the root system architecture without excavation. However, segmentation is a challenging problem in this context because the root and non-root regions share similar features. In this paper, we describe a method based on level sets and specifically adapted for this segmentation problem. In particular, we deal with the issues of using a level sets approach on large image volumes for root segmentation, and track active regions of the front using an occupancy grid. This method allows for straightforward modifications to a narrow-band algorithm such that excessive forward and backward movements of the front can be avoided, distance map computations in a narrow band context can be done in linear time through modification of Meijster et al.'s distance transform algorithm, and regions of the image volume are iteratively used to estimate distributions for root versus non-root classes. Results are shown of three plant species of different maturity levels, grown in three different media. Our method compares favorably to a state-of-the-art method for root segmentation in X-ray CT image volumes.Comment: 11 page

    Extracting root system architecture from X-ray micro computed tomography images using visual tracking

    Get PDF
    X-ray micro computed tomography (µCT) is increasingly applied in plant biology as an imaging system that is valuable for the study of root development in soil, since it allows the three-dimensional and non-destructive visualisation of plant root systems. Variations in the X-ray attenuation values of root material and the overlap in measured intensity values between roots and soil caused by water and organic matter represent major challenges to the extraction of root system architecture. We propose a novel technique to recover root system information from X-ray CT data, using a strategy based on a visual tracking framework embedding a modiffed level set method that is evolved using the Jensen-Shannon divergence. The model-guided search arising from the visual tracking approach makes the method less sensitive to the natural ambiguity of X-ray attenuation values in the image data and thus allows a better extraction of the root system. The method is extended by mechanisms that account for plagiatropic response in roots as well as collision between root objects originating from different plants that are grown and interact within the same soil environment. Experimental results on monocot and dicot plants, grown in different soil textural types, show the ability of successfully extracting root system information. Various global root system traits are measured from the extracted data and compared to results obtained with alternative methods

    Challenges and opportunities for quantifying roots and rhizosphere interactions through imaging and image analysis

    Get PDF
    The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions

    Extracting root system architecture from X-ray micro computed tomography images using visual tracking

    Get PDF
    X-ray micro computed tomography (µCT) is increasingly applied in plant biology as an imaging system that is valuable for the study of root development in soil, since it allows the three-dimensional and non-destructive visualisation of plant root systems. Variations in the X-ray attenuation values of root material and the overlap in measured intensity values between roots and soil caused by water and organic matter represent major challenges to the extraction of root system architecture. We propose a novel technique to recover root system information from X-ray CT data, using a strategy based on a visual tracking framework embedding a modiffed level set method that is evolved using the Jensen-Shannon divergence. The model-guided search arising from the visual tracking approach makes the method less sensitive to the natural ambiguity of X-ray attenuation values in the image data and thus allows a better extraction of the root system. The method is extended by mechanisms that account for plagiatropic response in roots as well as collision between root objects originating from different plants that are grown and interact within the same soil environment. Experimental results on monocot and dicot plants, grown in different soil textural types, show the ability of successfully extracting root system information. Various global root system traits are measured from the extracted data and compared to results obtained with alternative methods

    Root morphology and biomechanical characteristics of high altitude alpine plant species and their potential application in soil stabilization

    Get PDF
    Glacial forefields host young, poorly developed soils with highly unstable environmental conditions. Root system contribution to soil stabilization is a well-known phenomenon. Identifying the functional traits and root morphology of pioneer vegetation that establish on forefields can provide information useful in the practical application of plants in land restoration of high altitude mountain sites.This study aims to gather information on the root morphology and biomechanical characteristics of the 10 most dominant pioneer plant species of the forefield of Lys Glacier (NW Italian Alps).X-ray Computed Tomography (X-ray CT) was used to visualize and quantify non-destructively the root architecture of the studied species. Samples were cored directly from the forefield. Data on root traits such as total root length, rooting depth, root diameter, root length density and number of roots in relation to diameter classes as well as plant height were determined and compared between species. Roots were also tested for their tensile strength resistance.X-ray CT technology allowed us to visualize the 3D root architecture of species intact in their natural soil system. X-ray CT technology provided a visual representation of root-soil interface and information on the exact position, orientation and elongation of the root system in the soil core. Root architecture showed high variability among the studied species. For all species the majority of roots consisted of roots smaller than 0.5. mm in diameter. There were also considerable differences found in root diameter and total root length although these were not statistically significant. However, significant differences were found in rooting depth, root length density, plant height and root tensile strength between species and life forms (dwarf shrub, forb, graminoid). In all cases, root tensile strength decreased with increasing root diameter. The highest tensile strength was recorded for graminoids such as Luzula spicata (L.) DC. and Poa laxa Haenke and the lowest for Epilobium fleischeri Hochst.The differences in root properties among the studied species highlight the diverse adaptive and survival strategies plants employ to establish on and thrive in the harsh and unstable soil conditions of a glacier forefield. The data determined in this study could provide a significant contribution to a database that allow those who are working in land restoration and preservation of high altitude mountain sites to employ native species in a more efficient, effective and informed manner
    corecore