61,245 research outputs found

    Visual Search at Pinterest

    Full text link
    We demonstrate that, with the availability of distributed computation platforms such as Amazon Web Services and open-source tools, it is possible for a small engineering team to build, launch and maintain a cost-effective, large-scale visual search system with widely available tools. We also demonstrate, through a comprehensive set of live experiments at Pinterest, that content recommendation powered by visual search improve user engagement. By sharing our implementation details and the experiences learned from launching a commercial visual search engines from scratch, we hope visual search are more widely incorporated into today's commercial applications.Comment: in Proceedings of the 21th ACM SIGKDD International Conference on Knowledge and Discovery and Data Mining, 201

    Bilinear CNNs for Fine-grained Visual Recognition

    Full text link
    We present a simple and effective architecture for fine-grained visual recognition called Bilinear Convolutional Neural Networks (B-CNNs). These networks represent an image as a pooled outer product of features derived from two CNNs and capture localized feature interactions in a translationally invariant manner. B-CNNs belong to the class of orderless texture representations but unlike prior work they can be trained in an end-to-end manner. Our most accurate model obtains 84.1%, 79.4%, 86.9% and 91.3% per-image accuracy on the Caltech-UCSD birds [67], NABirds [64], FGVC aircraft [42], and Stanford cars [33] dataset respectively and runs at 30 frames-per-second on a NVIDIA Titan X GPU. We then present a systematic analysis of these networks and show that (1) the bilinear features are highly redundant and can be reduced by an order of magnitude in size without significant loss in accuracy, (2) are also effective for other image classification tasks such as texture and scene recognition, and (3) can be trained from scratch on the ImageNet dataset offering consistent improvements over the baseline architecture. Finally, we present visualizations of these models on various datasets using top activations of neural units and gradient-based inversion techniques. The source code for the complete system is available at http://vis-www.cs.umass.edu/bcnn

    A review of EO image information mining

    Full text link
    We analyze the state of the art of content-based retrieval in Earth observation image archives focusing on complete systems showing promise for operational implementation. The different paradigms at the basis of the main system families are introduced. The approaches taken are analyzed, focusing in particular on the phases after primitive feature extraction. The solutions envisaged for the issues related to feature simplification and synthesis, indexing, semantic labeling are reviewed. The methodologies for query specification and execution are analyzed

    Automatic Attribute Discovery with Neural Activations

    Full text link
    How can a machine learn to recognize visual attributes emerging out of online community without a definitive supervised dataset? This paper proposes an automatic approach to discover and analyze visual attributes from a noisy collection of image-text data on the Web. Our approach is based on the relationship between attributes and neural activations in the deep network. We characterize the visual property of the attribute word as a divergence within weakly-annotated set of images. We show that the neural activations are useful for discovering and learning a classifier that well agrees with human perception from the noisy real-world Web data. The empirical study suggests the layered structure of the deep neural networks also gives us insights into the perceptual depth of the given word. Finally, we demonstrate that we can utilize highly-activating neurons for finding semantically relevant regions.Comment: ECCV 201

    Jointly Discovering Visual Objects and Spoken Words from Raw Sensory Input

    Full text link
    In this paper, we explore neural network models that learn to associate segments of spoken audio captions with the semantically relevant portions of natural images that they refer to. We demonstrate that these audio-visual associative localizations emerge from network-internal representations learned as a by-product of training to perform an image-audio retrieval task. Our models operate directly on the image pixels and speech waveform, and do not rely on any conventional supervision in the form of labels, segmentations, or alignments between the modalities during training. We perform analysis using the Places 205 and ADE20k datasets demonstrating that our models implicitly learn semantically-coupled object and word detectors

    Order-Free RNN with Visual Attention for Multi-Label Classification

    Full text link
    In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.Comment: Accepted at 32nd AAAI Conference on Artificial Intelligence (AAAI-18

    Image Matters: Scalable Detection of Offensive and Non-Compliant Content / Logo in Product Images

    Full text link
    In e-commerce, product content, especially product images have a significant influence on a customer's journey from product discovery to evaluation and finally, purchase decision. Since many e-commerce retailers sell items from other third-party marketplace sellers besides their own, the content published by both internal and external content creators needs to be monitored and enriched, wherever possible. Despite guidelines and warnings, product listings that contain offensive and non-compliant images continue to enter catalogs. Offensive and non-compliant content can include a wide range of objects, logos, and banners conveying violent, sexually explicit, racist, or promotional messages. Such images can severely damage the customer experience, lead to legal issues, and erode the company brand. In this paper, we present a computer vision driven offensive and non-compliant image detection system for extremely large image datasets. This paper delves into the unique challenges of applying deep learning to real-world product image data from retail world. We demonstrate how we resolve a number of technical challenges such as lack of training data, severe class imbalance, fine-grained class definitions etc. using a number of practical yet unique technical strategies. Our system combines state-of-the-art image classification and object detection techniques with budgeted crowdsourcing to develop a solution customized for a massive, diverse, and constantly evolving product catalog.Comment: 10 page

    Hierarchical Spatial Sum-Product Networks for Action Recognition in Still Images

    Full text link
    Recognizing actions from still images is popularly studied recently. In this paper, we model an action class as a flexible number of spatial configurations of body parts by proposing a new spatial SPN (Sum-Product Networks). First, we discover a set of parts in image collections via unsupervised learning. Then, our new spatial SPN is applied to model the spatial relationship and also the high-order correlations of parts. To learn robust networks, we further develop a hierarchical spatial SPN method, which models pairwise spatial relationship between parts inside sub-images and models the correlation of sub-images via extra layers of SPN. Our method is shown to be effective on two benchmark datasets

    Shared Predictive Cross-Modal Deep Quantization

    Full text link
    With explosive growth of data volume and ever-increasing diversity of data modalities, cross-modal similarity search, which conducts nearest neighbor search across different modalities, has been attracting increasing interest. This paper presents a deep compact code learning solution for efficient cross-modal similarity search. Many recent studies have proven that quantization-based approaches perform generally better than hashing-based approaches on single-modal similarity search. In this paper, we propose a deep quantization approach, which is among the early attempts of leveraging deep neural networks into quantization-based cross-modal similarity search. Our approach, dubbed shared predictive deep quantization (SPDQ), explicitly formulates a shared subspace across different modalities and two private subspaces for individual modalities, and representations in the shared subspace and the private subspaces are learned simultaneously by embedding them to a reproducing kernel Hilbert space, where the mean embedding of different modality distributions can be explicitly compared. In addition, in the shared subspace, a quantizer is learned to produce the semantics preserving compact codes with the help of label alignment. Thanks to this novel network architecture in cooperation with supervised quantization training, SPDQ can preserve intramodal and intermodal similarities as much as possible and greatly reduce quantization error. Experiments on two popular benchmarks corroborate that our approach outperforms state-of-the-art methods

    Answering Visual-Relational Queries in Web-Extracted Knowledge Graphs

    Full text link
    A visual-relational knowledge graph (KG) is a multi-relational graph whose entities are associated with images. We explore novel machine learning approaches for answering visual-relational queries in web-extracted knowledge graphs. To this end, we have created ImageGraph, a KG with 1,330 relation types, 14,870 entities, and 829,931 images crawled from the web. With visual-relational KGs such as ImageGraph one can introduce novel probabilistic query types in which images are treated as first-class citizens. Both the prediction of relations between unseen images as well as multi-relational image retrieval can be expressed with specific families of visual-relational queries. We introduce novel combinations of convolutional networks and knowledge graph embedding methods to answer such queries. We also explore a zero-shot learning scenario where an image of an entirely new entity is linked with multiple relations to entities of an existing KG. The resulting multi-relational grounding of unseen entity images into a knowledge graph serves as a semantic entity representation. We conduct experiments to demonstrate that the proposed methods can answer these visual-relational queries efficiently and accurately
    corecore