131 research outputs found

    Development of an Autonomous Blimp

    Get PDF
    The purpose of this project was to design and fabricate an autonomous dirigible-based platform that could be used to enable development of navigational controllers and provide multi-mission capability through modularity. The platform was designed to carry and interface with a variety of mission specific hardware through a standard interface. A customized hardware platform was designed including a propulsion system and integrated sensor suite. Multiple ground level tests were undertaken to determine sensor performance and the capabilities of the navigational programs

    MODELING OF INNOVATIVE LIGHTER-THAN-AIR UAV FOR LOGISTICS, SURVEILLANCE AND RESCUE OPERATIONS

    Get PDF
    An unmanned aerial vehicle (UAV) is an aircraft that can operate without the presence of pilots, either through remote control or automated systems. The first part of the dissertation provides an overview of the various types of UAVs and their design features. The second section delves into specific experiences using UAVs as part of an automated monitoring system to identify potential problems such as pipeline leaks or equipment damage by conducting airborne surveys.Lighter-than-air UAVs, such as airships, can be used for various applications, from aerial photography, including surveying terrain, monitoring an area for security purposes and gathering information about weather patterns to surveillance. The third part reveals the applications of UAVs for assisting in search and rescue operations in disaster situations and transporting natural gas. Using PowerSim software, a model of airship behaviour was created to analyze the sprint-and-drift concept and study methods of increasing the operational time of airships while having a lower environmental impact when compared to a constantly switched-on engine. The analysis provided a reliable percentage of finding the victim during patrolling operations, although it did not account for victim behaviour. The study has also shown that airships may serve as a viable alternative to pipeline transportation for natural gas. The technology has the potential to revolutionize natural gas transportation, optimizing efficiency and reducing environmental impact. Additionally, airships have a unique advantage in accessing remote and otherwise inaccessible areas, providing significant benefits in the energy sector. The employment of this technology was studied to be effective in specific scenarios, and it will be worth continuing to study it for a positive impact on society and the environment

    Tier-scalable reconnaissance: the challenge of sensor optimization, sensor deployment, sensor fusion, and sensor interoperability

    Get PDF
    Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability

    Flying over the reality gap: From simulated to real indoor airships

    Get PDF
    Because of their ability to naturally float in the air, indoor airships (often called blimps) constitute an appealing platform for research in aerial robotics. However, when confronted to long lasting experiments such as those involving learning or evolutionary techniques, blimps present the disadvantage that they cannot be linked to external power sources and tend to have little mechanical resistance due to their low weight budget. One solution to this problem is to use a realistic flight simulator, which can also significantly reduce experimental duration by running faster than real time. This requires an efficient physical dynamic modelling and parameter identification procedure, which are complicated to develop and usually rely on costly facilities such as wind tunnels. In this paper, we present a simple and efficient physics-based dynamic modelling of indoor airships including a pragmatic methodology for parameter identification without the need for complex or costly test facilities. Our approach is tested with an existing blimp in a vision-based navigation task. Neuronal controllers are evolved in simulation to map visual input into motor commands in order to steer the flying robot forward as fast as possible while avoiding collisions. After evolution, the best individuals are successfully transferred to the physical blimp, which experimentally demonstrates the efficiency of the proposed approac

    Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance

    Get PDF
    For the purposes of space flight, reconnaissance field geologists have trained to become astronauts. However, the initial forays to Mars and other planetary bodies have been done by purely robotic craft. Therefore, training and equipping a robotic craft with the sensory and cognitive capabilities of a field geologist to form a science craft is a necessary prerequisite. Numerous steps are necessary in order for a science craft to be able to map, analyze, and characterize a geologic field site, as well as effectively formulate working hypotheses. We report on the continued development of the integrated software system AGFA: automated global feature analyzerreg, originated by Fink at Caltech and his collaborators in 2001. AGFA is an automatic and feature-driven target characterization system that operates in an imaged operational area, such as a geologic field site on a remote planetary surface. AGFA performs automated target identification and detection through segmentation, providing for feature extraction, classification, and prioritization within mapped or imaged operational areas at different length scales and resolutions, depending on the vantage point (e.g., spaceborne, airborne, or ground). AGFA extracts features such as target size, color, albedo, vesicularity, and angularity. Based on the extracted features, AGFA summarizes the mapped operational area numerically and flags targets of "interest", i.e., targets that exhibit sufficient anomaly within the feature space. AGFA enables automated science analysis aboard robotic spacecraft, and, embedded in tier-scalable reconnaissance mission architectures, is a driver of future intelligent and autonomous robotic planetary exploration

    Vision Based Control of Model Helicopters

    Get PDF

    An open-source autopilot and bio-inspired source localisation strategies for miniature blimps

    Full text link
    An Uncrewed Aerial Vehicle (UAV) is an airborne vehicle that has no people onboard and thus is either controlled remotely via radio signals or by autonomous capability. This thesis highlights the feasibility of using a bio-inspired miniature lighter than air UAV for indoor applications. While multicopters are the most used type of UAV, the smaller multicopter UAVs used in indoor applications have short flight times and are fragile making them vulnerable to collisions. For tasks such as gas source localisation where the agent would be deployed to detect a gas plume, the amount of air disturbance they create is a disadvantage. Miniature blimps are another type of UAV that are more suited to indoor applications due to their significantly higher collision tolerance. This thesis focuses on the development of a bio-inspired miniature blimp, called FishBlimp. A blimp generally creates significantly less disturbance to the airflow as it doesn’t have to support its own weight. This also usually enables much longer flight times. Using fins instead of propellers for propulsion further reduces the air disturbance as the air velocity is lower. FishBlimp has four fins attached in different orientations along the perimeter of a helium filled spherical envelope to enable it to move along the cardinal axes and yaw. Support for this new vehicle-type was added to the open-source flight control firmware called ArduPilot. Manual control and autonomous functions were developed for this platform to enable position hold and velocity control mode, implemented using a cascaded PID controller. Flight tests revealed that FishBlimp displayed position control with maximum overshoot of about 0.28m and has a maximum flight speed of 0.3m/s. FishBlimp was then applied to source localisation, firstly as a single agent seeking to identify a plume source using a modified Cast & Surge algorithm. FishBlimp was also developed in simulation to perform source localisation with multiple blimps, using a Particle Swarm Optimisation (PSO) algorithm. This enabled them to work cooperatively in order to reduce the time taken for them to find the source. This shows the potential of a platform like FishBlimp to carry out successful indoor source localisation missions
    • …
    corecore