698 research outputs found

    A Neural Circuit Model for Prospective Control of Interceptive Reaching

    Full text link
    Two prospective controllers of hand movements in catching -- both based on required velocity control -- were simulated. Under certain conditions, this required velocity controlled to overshoots of the future interception point. These overshoots were absent in pertinent experiments. To remedy this shortcoming, the required velocity model was reformulated in terms of a neural network, the Vector Integration To Endpoint model, to create a Required Velocity Integration To Endpoint modeL Addition of a parallel relative velocity channel, resulting in the Relative and Required Velocity Integration To Endpoint model, provided a better account for the experimentally observed kinematics than the existing, purely behavioral models. Simulations of reaching to intercept decelerating and accelerating objects in the presence of background motion were performed to make distinct predictions for future experiments.Vrije Universiteit (Gerrit-Jan van Jngen-Schenau stipend of the Faculty of Human Movement Sciences); Royal Netherlands Academy of Arts and Sciences; Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-1-0409

    Delayed inhibition of an anticipatory action during motion extrapolation

    Get PDF
    Background: Continuous visual information is important for movement initiation in a variety of motor tasks. However, even in the absence of visual information people are able to initiate their responses by using motion extrapolation processes. Initiation of actions based on these cognitive processes, however, can demand more attentional resources than that required in situations in which visual information is uninterrupted. In the experiment reported we sought to determine whether the absence of visual information would affect the latency to inhibit an anticipatory action. Methods: The participants performed an anticipatory timing task where they were instructed to move in synchrony with the arrival of a moving object at a determined contact point. On 50% of the trials, a stop sign appeared on the screen and it served as a signal for the participants to halt their movements. They performed the anticipatory task under two different viewing conditions: Full-View (uninterrupted) and Occluded-View (occlusion of the last 500 ms prior to the arrival at the contact point). Results: The results indicated that the absence of visual information prolonged the latency to suppress the anticipatory movement. Conclusion: We suggest that the absence of visual information requires additional cortical processing that creates competing demand for neural resources. Reduced neural resources potentially causes increased reaction time to the inhibitory input or increased time estimation variability, which in combination would account for prolonged latency

    Sensitivity to fine-grained and coarse visual information: The effect of blurring on anticipation skill

    Get PDF
    Copyright @ 2009 Edizione l PozziWe examined skilled tennis players’ ability to perceive fine and coarse information by assessing their ability to predict serve direction under three levels of visual blur. A temporal occlusion design was used in which skilled players viewed serves struck by two players that were occluded at one of four points relative to ball-racquet impact (-320ms, -160ms, 0ms, +160ms) and shown with one of three levels of blur (no blur, 20% blur, 40% blur). Using a within-task criterion to establish good and poor anticipators, the results revealed a significant interaction between anticipation skill and level of blur. Anticipation skill was significantly disrupted in the ‘20% blur’ condition; however, judgment accuracy of both groups then improved in the ‘40% blur’ condition while confidence in judgments declined. We conclude that there is evidence for processing of coarse configural information but that anticipation skill in this task was primarily driven by perception of fine-grained information.This research was supported by a University of Hong Kong Seed Funding for Basic Research grant awarded to the second author

    Catching what we can't see: manual interception of occluded fly-ball trajectories

    Get PDF
    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories

    Gaze Behavior in One-Handed Catching and Its Relation with Interceptive Performance: What the Eyes Can't Tell

    Get PDF
    In ball sports, it is usually acknowledged that expert athletes track the ball more accurately than novices. However, there is also evidence that keeping the eyes on the ball is not always necessary for interception. Here we aimed at gaining new insights on the extent to which ocular pursuit performance is related to catching performance. To this end, we analyzed eye and head movements of nine subjects catching a ball projected by an actuated launching apparatus. Four different ball flight durations and two different ball arrival heights were tested and the quality of ocular pursuit was characterized by means of several timing and accuracy parameters. Catching performance differed across subjects and depended on ball flight characteristics. All subjects showed a similar sequence of eye movement events and a similar modulation of the timing of these events in relation to the characteristics of the ball trajectory. On a trial-by-trial basis there was a significant relationship only between pursuit duration and catching performance, confirming that keeping the eyes on the ball longer increases catching success probability. Ocular pursuit parameters values and their dependence on flight conditions as well as the eye and head contributions to gaze shift differed across subjects. However, the observed average individual ocular behavior and the eye-head coordination patterns were not directly related to the individual catching performance. These results suggest that several oculomotor strategies may be used to gather information on ball motion, and that factors unrelated to eye movements may underlie the observed differences in interceptive performance

    Interception of vertically approaching objects: temporal recruitment of the internal model of gravity and contribution of optical information

    Get PDF
    introduction: recent views posit that precise control of the interceptive timing can be achieved by combining on-line processing of visual information with predictions based on prior experience. Indeed, for interception of free-falling objects under gravity's effects, experimental evidence shows that time-to-contact predictions can be derived from an internal gravity representation in the vestibular cortex. however, whether the internal gravity model is fully engaged at the target motion outset or reinforced by visual motion processing at later stages of motion is not yet clear. moreover, there is no conclusive evidence about the relative contribution of internalized gravity and optical information in determining the time-to-contact estimates.methods: we sought to gain insight on this issue by asking 32 participants to intercept free falling objects approaching directly from above in virtual reality. object motion had durations comprised between 800 and 1100 ms and it could be either congruent with gravity (1 g accelerated motion) or not (constant velocity or -1 g decelerated motion). we analyzed accuracy and precision of the interceptive responses, and fitted them to bayesian regression models, which included predictors related to the recruitment of a priori gravity information at different times during the target motion, as well as based on available optical information.results: consistent with the use of internalized gravity information, interception accuracy and precision were significantly higher with 1 g motion. moreover, bayesian regression indicated that interceptive responses were predicted very closely by assuming engagement of the gravity prior 450 ms after the motion onset, and that adding a predictor related to on-line processing of optical information improved only slightly the model predictive power. discussion: thus, engagement of a priori gravity information depended critically on the processing of the first 450 ms of visual motion information, exerting a predominant influence on the interceptive timing, compared to continuously available optical information. finally, these results may support a parallel processing scheme for the control of interceptive timing

    Interception of virtual throws reveals predictive skills based on the visual processing of throwing kinematics

    Get PDF
    Predicting the outcome of observed actions is fundamental for efficient interpersonal interactions. This is evident in interceptive sports, where predicting the future ball trajectory could make apart success and fail. We quantitatively assessed the predictive abilities of non-trained adults intercepting thrown balls in immersive virtual reality. Participants performed better when they could see the complete throwing action in addition to the ball flight, and they were able to move toward the correct direction when the ball flight was occluded. In both cases, performance varies with the individual motor style of the thrower. These results prove that humans can effectively predict the unfolding of complex full-body actions, with no need to extensively practice them, and that such predictions are exploited online to optimize interactive motor performance. This suggests that humans hold a functional knowledge of how actions recurrent in the human motor repertoire map into the changes brought to the environment

    Temporal and Spatial Occlusion of Advanced Visual Information Constrains Movement (Re) organization in One-Handed Catching Behaviors

    Get PDF
    Dynamic interceptive actions are performed under severe spatial and temporal constraints. Here, behavioral processes underpinning anticipation in one-handed catching were examined using novel technology to implement a spatial and temporal occlusion design. Video footage of an actor throwing a ball was manipulated to create four temporal and five spatial occlusion conditions. Data from twelve participants’ hand kinematics and gaze behaviors were recorded while attempting to catch a projected ball synchronized with the video footage. Catching performance decreased with earlier occlusion of the footage. Movement onset of the catching hand and initiation of visual ball tracking emerged earlier when footage of the thrower was occluded at a later time point in the throwing action. Spatial occlusion did not affect catching success, although movement onset emerged later when increased visual information of the actor was occluded. Later movement onset was countered by greater maximum velocity of the catching hand. Final stages of action (e.g., grasping action of the hand) remained unchanged across both spatial and temporal conditions suggesting that later phases of the action were organized using ball flight information. Findings highlighted the importance of maintaining information-movement coupling during performance of interceptive actions, since movement behaviors were continuously (re)organized using kinematic information from a thrower's actions and ball flight information. Keywords: Perception-action coupling; Informational constraints; Interceptive timing; Gaze; Adaptive behaviors; Anticipation

    Quiet Eye Duration and Gun Motion in Elite Shotgun Shooting

    Get PDF
    INTRODUCTION: No literature exists to document skill-related differences in shotgun shooting and whether these may be a function of eye movements and control of gun motion. We therefore conducted an exploratory investigation of the visual search behaviors and gun barrel kinematics used by elite and subelite shooters across the three shotgun shooting subdisciplines. METHODS: Point of gaze and gun barrel kinematics were recorded in groups of elite (n = 24) and subelite (n = 24) shooters participating in skeet, trap, and double trap events. Point of gaze was calculated in relation to the scene, while motion of the gun was captured by two stationary external cameras. Quiet eye (final fixation or tracking gaze that is located on a specific location/object in the visual display for a minimum of 100 ms) duration and onset were analyzed as well as gun motion profiles in the horizontal and vertical planes. RESULTS: In skeet, trap, and double trap disciplines, elite shooters demonstrated both an earlier onset and a longer relative duration of quiet eye than their subelite counterparts did. Also, in all three disciplines, quiet eye duration was longer and onset earlier during successful compared with unsuccessful trials for elite and subelite shooters. Kinematic analyses indicated that a slower movement of the gun barrel was used by elite compared with subelite shooters. CONCLUSIONS: Overall, stable gun motion and a longer quiet eye duration seem critical to a successful performance in all three shotgun disciplines
    corecore