277 research outputs found

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Towards Closed-loop, Robot Assisted Percutaneous Interventions under MRI Guidance

    Get PDF
    Image guided therapy procedures under MRI guidance has been a focused research area over past decade. Also, over the last decade, various MRI guided robotic devices have been developed and used clinically for percutaneous interventions, such as prostate biopsy, brachytherapy, and tissue ablation. Though MRI provides better soft tissue contrast compared to Computed Tomography and Ultrasound, it poses various challenges like constrained space, less ergonomic patient access and limited material choices due to its high magnetic field. Even after, advancements in MRI compatible actuation methods and robotic devices using them, most MRI guided interventions are still open-loop in nature and relies on preoperative or intraoperative images. In this thesis, an intraoperative MRI guided robotic system for prostate biopsy comprising of an MRI compatible 4-DOF robotic manipulator, robot controller and control application with Clinical User Interface (CUI) and surgical planning applications (3DSlicer and RadVision) is presented. This system utilizes intraoperative images acquired after each full or partial needle insertion for needle tip localization. Presented system was approved by Institutional Review Board at Brigham and Women\u27s Hospital(BWH) and has been used in 30 patient trials. Successful translation of such a system utilizing intraoperative MR images motivated towards the development of a system architecture for close-loop, real-time MRI guided percutaneous interventions. Robot assisted, close-loop intervention could help in accurate positioning and localization of the therapy delivery instrument, improve physician and patient comfort and allow real-time therapy monitoring. Also, utilizing real-time MR images could allow correction of surgical instrument trajectory and controlled therapy delivery. Two of the applications validating the presented architecture; closed-loop needle steering and MRI guided brain tumor ablation are demonstrated under real-time MRI guidance

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Accurate multi-robot targeting for keyhole neurosurgery based on external sensors monitoring

    Get PDF
    Robotics has recently been introduced in surgery to improve intervention accuracy, to reduce invasiveness and to allow new surgical procedures. In this framework, the ROBOCAST system is an optically surveyed multi-robot chain aimed at enhancing the accuracy of surgical probe insertion during keyhole neurosurgery procedures. The system encompasses three robots, connected as a multiple kinematic chain (serial and parallel), totalling 13 degrees of freedom, and it is used to automatically align the probe onto a desired planned trajectory. The probe is then inserted in the brain, towards the planned target, by means of a haptic interface. This paper presents a new iterative targeting approach to be used in surgical robotic navigation, where the multi-robot chain is used to align the surgical probe to the planned pose, and an external sensor is used to decrease the alignment errors. The iterative targeting was tested in an operating room environment using a skull phantom, and the targets were selected on magnetic resonance images. The proposed targeting procedure allows about 0.3 mm to be obtained as the residual median Euclidean distance between the planned and the desired targets, thus satisfying the surgical accuracy requirements (1 mm), due to the resolution of the diffused medical images. The performances proved to be independent of the robot optical sensor calibration accuracy

    Neurosurgical Ultrasound Pose Estimation Using Image-Based Registration and Sensor Fusion - A Feasibility Study

    Get PDF
    Modern neurosurgical procedures often rely on computer-assisted real-time guidance using multiple medical imaging modalities. State-of-the-art commercial products enable the fusion of pre-operative with intra-operative images (e.g., magnetic resonance [MR] with ultrasound [US] images), as well as the on-screen visualization of procedures in progress. In so doing, US images can be employed as a template to which pre-operative images can be registered, to correct for anatomical changes, to provide live-image feedback, and consequently to improve confidence when making resection margin decisions near eloquent regions during tumour surgery. In spite of the potential for tracked ultrasound to improve many neurosurgical procedures, it is not widely used. State-of-the-art systems are handicapped by optical tracking’s need for consistent line-of-sight, keeping tracked rigid bodies clean and rigidly fixed, and requiring a calibration workflow. The goal of this work is to improve the value offered by co-registered ultrasound images without the workflow drawbacks of conventional systems. The novel work in this thesis includes: the exploration and development of a GPU-enabled 2D-3D multi-modal registration algorithm based on the existing LC2 metric; and the use of this registration algorithm in the context of a sensor and image-fusion algorithm. The work presented here is a motivating step in a vision towards a heterogeneous tracking framework for image-guided interventions where the knowledge from intraoperative imaging, pre-operative imaging, and (potentially disjoint) wireless sensors in the surgical field are seamlessly integrated for the benefit of the surgeon. The technology described in this thesis, inspired by advances in robot localization demonstrate how inaccurate pose data from disjoint sources can produce a localization system greater than the sum of its parts

    Passive Resonant Coil Based Fast Registration And Tracking System For Real-Time Mri-Guided Minimally Invasive Surgery

    Get PDF
    This thesis presents a single-slice based fast stereotactic registration and tracking technique along with a corresponding modular system for guiding robotic mechanism or interventional instrument to perform needle-based interventions under live MRI guidance. The system can provide tracking of full 6 degree-of-freedom (DOF) in stereotactic interventional surgery based upon a single, rapidly acquired cross-sectional image. The whole system is constructed with a modular data transmission software framework and mechanical structure so that it supports remote supervision and manipulation between a 3D Matlab tracking user interface (UI) and an existing MRI robot controller by using the OpenIGTLink network communication protocol. It provides better closed-loop control by implementing a feedback output interface to the MRI-guided robot. A new compact fiducial frame design is presented, and the fiducial is wrapped with a passive resonant coil. The coil resonates at the Larmor frequency for 3T MRI to enhance signal strength and enable for rapid imaging. The fiducial can be attached near the distal end of the robot and coaxially with a needle so as to visualize target tissue and track the surgical tool synchronously. The MRI-compatible design of fiducial frame, robust tracking algorithm and modular interface allow this tracking system to be conveniently used on different robots or devices and in different size of MRI bores. Several iterations of the tracking fiducial and passive resonant coils were constructed and evaluated in a Phillips Achieva 3T MRI. To assess accuracy and robustness of the tracking algorithm, 25 groups of images with different poses were successively scanned along specific sequence in and MRI experiment. The translational RMS error along depth is 0.271mm with standard deviation of 0.277mm for totally 100 samples. The overall angular RMS error is less than 0.426 degree with standard deviation of 0.526 degree for totally 150 samples. The passive resonant coils were shown to significantly increase signal intensity in the fiducial relative to the surroundings and provide for rapid imaging with low flip angles

    Towards Automated Ear Surgery: Improved Calibration and Registration Procedures

    Get PDF
    A micro-electro-mechanical system (MEMS) based hydrophone inserted into the cochlea may be utilized to study acoustic pressure distribution. The objective of this project, performed through collaboration between WPI and UniversitätsSpital Zürich, was to develop an improved procedure for experiments at the UniversitätsSpital Zürich that would increase the insertion accuracy. This is necessary due to the small scale, complex anatomy, and delicate nature of the inner ear. This was done by calibrating tools and completing registration and insertion processes. The goal was to achieve an overall accuracy of 250 microns, which was met with a final accuracy below 200 microns, suggestive that the devised procedure can provide an accurate roadmap for future experiments
    • …
    corecore