13,064 research outputs found

    Intermediate results in active inspection and reverse engineering

    Get PDF
    technical reportIn previous work [18], we have proposed a new design for inspection and reverse engineering environments. We have investigated the use of the dynamic recursive context of discrete event dynamic systems (DRFSM DEDS) to guide and control the active exploration and sensing of mechanical parts for industrial inspection and reverse engineering, and utilized the recursive nature of the parts under consideration. In our recent work, we construct a sensing to CAD interface for the automatic reconstruction of parts from visual data. This report includes previous results and describes this interface in greater detail, demonstrating its effectiveness with a reverse-engineered, machined part

    Testing of molded high temperature plastic actuator road seals for use in advanced aircraft hydraulic systems

    Get PDF
    Molded high temperature plastic first and second stage rod seal elements were evaluated in seal assemblies to determine performance characteristics. These characteristics were compared with the performance of machined seal elements. The 6.35 cm second stage Chevron seal assembly was tested using molded Chevrons fabricated from five molding materials. Impulse screening tests conducted over a range of 311 K to 478 K revealed thermal setting deficiencies in the aromatic polyimide molding materials. Seal elements fabricated from aromatic copolyester materials structurally failed during impulse cycle calibration. Endurance testing of 3.85 million cycles at 450 K using MIL-H-83283 fluid showed poorer seal performance with the unfilled aromatic polyimide material than had been attained with seals machined from Vespel SP-21 material. The 6.35 cm first stage step-cut compression loaded seal ring fabricated from copolyester injection molding material failed structurally during impulse cycle calibration. Molding of complex shape rod seals was shown to be a potentially controllable technique, but additional molding material property testing is recommended

    Replacement bearing for Rocketdyne SSME HPOTPs using alternate self-lubricating retainer materials

    Get PDF
    Research was conducted to develop replacement bearings for the Rocketdyne Space Shuttle main engine (SSME) high pressure oxidizer turbopumps (HPOTPs). The replacement bearings consisted of standard balls and races with a special Battelle Self-Lubricating Insert Configuration (BASIC) retainer. The BASIC retainer consists of a phosphor bronze housing with inserts consisting of a polytetrafluoretheylene (PTFE) and bronze compound. The PTFE contacts the balls and the land guiding surface on the outer race. A PTFE transfer film is formed on balls and races, which lubricates the critical interfaces. The BASIC retainer is a one-to-one replacement for the current Armalon retainer, but has superior lubricating properties and is stronger over the broad temperature range anticipated for the HPOTP bearings. As a part of the project 40 sets of balls and races (two sizes) and 52 BASIC retainers were shipped to NASA/MSFC

    Automatic Fastening Large Structures: a New Approach

    Get PDF
    The external tank (ET) intertank structure for the space shuttle, a 27.5 ft diameter 22.5 ft long externally stiffened mechanically fastened skin-stringer-frame structure, was a labor intensitive manual structure built on a modified Saturn tooling position. A new approach was developed based on half-section subassemblies. The heart of this manufacturing approach will be 33 ft high vertical automatic riveting system with a 28 ft rotary positioner coming on-line in mid 1985. The Automatic Riveting System incorporates many of the latest automatic riveting technologies. Key features include: vertical columns with two sets of independently operating CNC drill-riveting heads; capability of drill, insert and upset any one piece fastener up to 3/8 inch diameter including slugs without displacing the workpiece offset bucking ram with programmable rotation and deep retraction; vision system for automatic parts program re-synchronization and part edge margin control; and an automatic rivet selection/handling system

    Powder metallurgy Rene 95 rotating turbine engine parts, volume 2

    Get PDF
    A Rene 95 alloy as-HIP high pressure turbine aft shaft in the CF6-50 engine and a HIP plus forged Rene 95 compressor disk in the CFM56 engine were tested. The CF6-50 engine test was conducted for 1000 C cycles and the CFM56 test for 2000 C cycles. Post test evaluation and analysis of the CF6-50 shaft and the CFM56 compressor disk included visual, fluorescent penetrant, and dimensional inspections. No defects or otherwise discrepant conditions were found. These parts were judged to have performed satisfactorily

    Fabrication and test of a space power boiler feed electromagnetic pump. Part 1: Design and manufacture of pump

    Get PDF
    A three-phase helical induction electromagnetic (EM) pump has been designed and built. This pump was designed for use as the boiler-feed pump of a potassium Rankine-cycle space electric power system. The pump is constructed of high temperature materials including a T-111 duct, Hiperco 27 magnetic material, nickel clad silver conductor wire, and a completely inorganic insulation system. The pump is designed to deliver 3.25 lb/sec potassium at 1000 F with a developed head of 240 psi while being cooled by 800 F NaK. At these conditions, the overall pump efficiency is expected to be 18%

    Ceramic applications in turbine engines

    Get PDF
    Ceramic material characterization and testing of ceramic nozzle vanes, turbine tip shrouds, and regenerators disks at 36 C above the baseline engine TIT and the design, analysis, fabrication and development activities are described. The design of ceramic components for the next generation engine to be operated at 2070 F was completed. Coupons simulating the critical 2070 F rotor blade was hot spin tested for failure with sufficient margin to quality sintered silicon nitride and sintered silicon carbide, validating both the attachment design and finite element strength. Progress made in increasing strength, minimizing variability, and developing nondestructive evaluation techniques is reported

    Evaluation of ceramics for stator application: Gas turbine engine report

    Get PDF
    Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported

    Formed platelet combustor liner construction feasibility, phase A

    Get PDF
    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase A - feasibility study and technology development; (2) phase B - sub-scale fabrication feasibility; and (3) phase C - large scale fabrication validation. This report covers the Phase A activities, which began in December of 1988

    Refurbishment cost study of the thermal protection system of a space shuttle vehicle. Phase 2: Supplement

    Get PDF
    The labor costs and techniques associated with the maintenance of a bonded-on ablator thermal protection system (TPS) concept, suitable for Space Shuttle application are examined. The baseline approach to TPS attachment involves bonding reusable surface insulation (RSI) and/or ablators to the structural skin of the vehicle. The RSI and/or ablators in the form of either flat or contoured panels can be bonded to the skin of the primary structure directly or by way of an intermediate silicone foam rubber pad. The use of foam rubber pads permits the use of buckling skins and protruding heat rivets on the primary structure, minimizing structural weight and fabrication costs. In the case of the RSI, the foam rubber pad serves as a required strain isolator. For purpose of comparison, test data were obtained for an installation with and without the use of a strain isolator. The refurbishment aspects of a bonded-on RSI concept (without a strain isolator) were examined experimentally along with several externally removable panel concepts employing both ablator and RSI TPS. The various concepts are compared
    corecore