1,047 research outputs found

    Occlusion-related lateral connections stabilize kinetic depth stimuli through perceptual coupling

    Get PDF
    Local sensory information is often ambiguous forcing the brain to integrate spatiotemporally separated information for stable conscious perception. Lateral connections between clusters of similarly tuned neurons in the visual cortex are a potential neural substrate for the coupling of spatially separated visual information. Ecological optics suggests that perceptual coupling of visual information is particularly beneficial in occlusion situations. Here we present a novel neural network model and a series of human psychophysical experiments that can together explain the perceptual coupling of kinetic depth stimuli with activity-driven lateral information sharing in the far depth plane. Our most striking finding is the perceptual coupling of an ambiguous kinetic depth cylinder with a coaxially presented and disparity defined cylinder backside, while a similar frontside fails to evoke coupling. Altogether, our findings are consistent with the idea that clusters of similarly tuned far depth neurons share spatially separated motion information in order to resolve local perceptual ambiguities. The classification of far depth in the facilitation mechanism results from a combination of absolute and relative depth that suggests a functional role of these lateral connections in the perception of partially occluded objects

    How Does the Cerebral Cortex Work? Developement, Learning, Attention, and 3D Vision by Laminar Circuits of Visual Cortex

    Full text link
    A key goal of behavioral and cognitive neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how the visual cortex sees. Visual cortex, like many parts of perceptual and cognitive neocortex, is organized into six main layers of cells, as well as characteristic sub-lamina. Here it is proposed how these layered circuits help to realize the processes of developement, learning, perceptual grouping, attention, and 3D vision through a combination of bottom-up, horizontal, and top-down interactions. A key theme is that the mechanisms which enable developement and learning to occur in a stable way imply properties of adult behavior. These results thus begin to unify three fields: infant cortical developement, adult cortical neurophysiology and anatomy, and adult visual perception. The identified cortical mechanisms promise to generalize to explain how other perceptual and cognitive processes work.Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    A Neural Model of Motion Processing and Visual Navigation by Cortical Area MST

    Full text link
    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually-guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals, and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves, and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.Defense Research Projects Agency (N00014-92-J-4015); Office of Naval Research (N00014-92-J-1309, N00014-95-1-0409, N00014-95-1-0657, N00014-91-J-4100, N0014-94-I-0597); Air Force Office of Scientific Research (F49620-92-J-0334)

    Spatial and temporal integration of binocular disparity in the primate brain

    Get PDF
    Le système visuel du primate s'appuie sur les légères différences entre les deux projections rétiniennes pour percevoir la profondeur. Cependant, on ne sait pas exactement comment ces disparités binoculaires sont traitées et intégrées par le système nerveux. D'un côté, des enregistrements unitaires chez le macaque permettent d'avoir accès au codage neuronal de la disparité à un niveau local. De l'autre côté, la neuroimagerie fonctionnelle (IRMf) chez l'humain met en lumière les réseaux corticaux impliqués dans le traitement de la disparité à un niveau macroscopique mais chez une espèce différente. Dans le cadre de cette thèse, nous proposons d'utiliser la technique de l'IRMf chez le macaque pour permettre de faire le lien entre les enregistrements unitaires chez le macaque et les enregistrements IRMf chez l'humain. Cela, afin de pouvoir faire des comparaisons directes entre les deux espèces. Plus spécifiquement, nous nous sommes intéressés au traitement spatial et temporal des disparités binoculaires au niveau cortical mais aussi au niveau perceptif. En étudiant l'activité corticale en réponse au mouvement tridimensionnel (3D), nous avons pu montrer pour la première fois 1) qu'il existe un réseau dédié chez le macaque qui contient des aires allant au-delà du cluster MT et des aires environnantes et 2) qu'il y a des homologies avec le réseau trouvé chez l'humain en réponse à des stimuli similaires. Dans une deuxième étude, nous avons tenté d'établir un lien entre les biais perceptifs qui reflètent les régularités statistiques 3D ans l'environnement visuel et l'activité corticale. Nous nous sommes demandés si de tels biais existent et peuvent être reliés à des réponses spécifiques au niveau macroscopique. Nous avons trouvé de plus fortes activations pour le stimulus reflétant les statistiques naturelles chez un sujet, démontrant ainsi une possible influence des régularités spatiales sur l'activité corticale. Des analyses supplémentaires sont cependant nécessaires pour conclure de façon définitive. Néanmoins, nous avons pu confirmer de façon robuste l'existence d'un vaste réseau cortical répondant aux disparités corrélées chez le macaque. Pour finir, nous avons pu mesurer pour la première fois les points rétiniens correspondants au niveau du méridien vertical chez un sujet macaque qui réalisait une tâche comportementale (procédure à choix forcé). Nous avons pu comparer les résultats obtenus avec des données également collectées chez des participants humains avec le même protocole. Dans les différentes sections de discussion, nous montrons comment nos différents résultats ouvrent la voie à de nouvelles perspectives.The primate visual system strongly relies on the small differences between the two retinal projections to perceive depth. However, it is not fully understood how those binocular disparities are computed and integrated by the nervous system. On the one hand, single-unit recordings in macaque give access to neuronal encoding of disparity at a very local level. On the other hand, functional neuroimaging (fMRI) studies in human shed light on the cortical networks involved in disparity processing at a macroscopic level but with a different species. In this thesis, we propose to use an fMRI approach in macaque to bridge the gap between single-unit and fMRI recordings conducted in the non-human and human primate brain, respectively, by allowing direct comparisons between the two species. More specifically, we focused on the temporal and spatial processing of binocular disparities at the cortical but also at the perceptual level. Investigating cortical activity in response to motion-in-depth, we could show for the first time that 1) there is a dedicated network in macaque that comprises areas beyond the MT cluster and its surroundings and that 2) there are homologies with the human network involved in processing very similar stimuli. In a second study, we tried to establish a link between perceptual biases that reflect statistical regularities in the three-dimensional visual environment and cortical activity, by investigating whether such biases exist and can be related to specific responses at a macroscopic level. We found stronger activity for the stimulus reflecting natural statistics in one subject, demonstrating a potential influence of spatial regularities on the cortical activity. Further work is needed to firmly conclude about such a link. Nonetheless, we robustly confirmed the existence of a vast cortical network responding to correlated disparities in the macaque brain. Finally, we could measure for the first time retinal corresponding points on the vertical meridian of a macaque subject performing a behavioural task (forced-choice procedure) and compare it to the data we also collected in several human observers with the very same protocol. In the discussion sections, we showed how these findings open the door to varied perspectives

    7 tesla FMRI reveals systematic functional organization for binocular disparity in dorsal visual cortex.

    Get PDF
    The binocular disparity between the views of the world registered by the left and right eyes provides a powerful signal about the depth structure of the environment. Despite increasing knowledge of the cortical areas that process disparity from animal models, comparatively little is known about the local architecture of stereoscopic processing in the human brain. Here, we take advantage of the high spatial specificity and image contrast offered by 7 tesla fMRI to test for systematic organization of disparity representations in the human brain. Participants viewed random dot stereogram stimuli depicting different depth positions while we recorded fMRI responses from dorsomedial visual cortex. We repeated measurements across three separate imaging sessions. Using a series of computational modeling approaches, we report three main advances in understanding disparity organization in the human brain. First, we show that disparity preferences are clustered and that this organization persists across imaging sessions, particularly in area V3A. Second, we observe differences between the local distribution of voxel responses in early and dorsomedial visual areas, suggesting different cortical organization. Third, using modeling of voxel responses, we show that higher dorsal areas (V3A, V3B/KO) have properties that are characteristic of human depth judgments: a simple model that uses tuning parameters estimated from fMRI data captures known variations in human psychophysical performance. Together, these findings indicate that human dorsal visual cortex contains selective cortical structures for disparity that may support the neural computations that underlie depth perception.This work wassupported by the European Community’s Seventh Framework Programme FP7/2007-2013 (Grant PITN-GA- 2011-290011), the Japan Society for the Promotion of Science (JSPS KAKENHI Grant 26870911), and the Wellcome Trust (Grant 095183/Z/10/Z).This is the final version of the article. It was originally published in the Journal of Neuroscience, 18 February 2015, 35(7): 3056-3072; doi: 10.1523/JNEUROSCI.3047-14.2015

    A Laminar Cortical Model for 3D Perception of Slanted and Curved Surfaces and of 2D Images: Developement, attention, and Bistability

    Full text link
    A model of laminar visual cortical dynamics proposes how 3D boundary and surface representations of slated and curved 3D objects and 2D images arise. The 3D boundary representations emerge from interactions between non-classical horizontal receptive field interactions with intracorticcal and intercortical feedback circuits. Such non-classical interactions contextually disambiguate classical receptive field responses to ambiguous visual cues using cells that are sensitive to angles and disparity gradients with cortical areas V1 and V2. These cells are all variants of bipole grouping cells. Model simulations show how horizontal connections can develop selectively to angles, how slanted surfaces can activate 3D boundary representations that are sensitive to angles and disparity gradients, how 3D filling-in occurs across slanted surfaces, how a 2D Necker cube image can be represented in 3D, and how bistable Necker cuber percepts occur. The model also explains data about slant aftereffects and 3D neon color spreading. It shows how habituative transmitters that help to control developement also help to trigger bistable 3D percepts and slant aftereffects, and how attention can influence which of these percepts is perceived by propogating along some object boundaries.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-98-1-0108); Defense Advanced Research Projects Agency and the Office of Naval Research (N0014-95-1-0409, N00014-01-1-0624, N00014-95-1-0657); National Science Foundation (IIS-97-20333

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore