5,656 research outputs found

    Metadata Augmentation for Semantic- and Context- Based Retrieval of Digital Cultural Objects

    Get PDF
    Cultural objects are increasingly stored and generated in digital form, yet effective methods for their indexing and retrieval still remain an open area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. The focus is on the rationale and conceptual design of the system and its various components. In particular, we discuss techniques for augmenting commonly used metadata with visual features and domain knowledge to generate high-level abstract metadata which in turn can be used for semantic and context-based indexing and retrieval. We use a sample collection of Vietnamese traditional woodcuts to demonstrate the usefulness of this approach

    Multi-task CNN Model for Attribute Prediction

    Full text link
    This paper proposes a joint multi-task learning algorithm to better predict attributes in images using deep convolutional neural networks (CNN). We consider learning binary semantic attributes through a multi-task CNN model, where each CNN will predict one binary attribute. The multi-task learning allows CNN models to simultaneously share visual knowledge among different attribute categories. Each CNN will generate attribute-specific feature representations, and then we apply multi-task learning on the features to predict their attributes. In our multi-task framework, we propose a method to decompose the overall model's parameters into a latent task matrix and combination matrix. Furthermore, under-sampled classifiers can leverage shared statistics from other classifiers to improve their performance. Natural grouping of attributes is applied such that attributes in the same group are encouraged to share more knowledge. Meanwhile, attributes in different groups will generally compete with each other, and consequently share less knowledge. We show the effectiveness of our method on two popular attribute datasets.Comment: 11 pages, 3 figures, ieee transaction pape
    • …
    corecore