5,322 research outputs found

    Altered white matter structure in auditory tracts following early monocular enucleation

    Get PDF
    Purpose: Similar to early blindness, monocular enucleation (the removal of one eye) early in life results in crossmodal behavioral and morphological adaptations. Previously it has been shown that partial visual deprivation from early monocular enucleation results in structural white matter changes throughout the visual system (Wong et al., 2018). The current study investigated structural white matter of the auditory system in adults who have undergone early monocular enucleation compared to binocular control participants. Methods: We reconstructed four auditory and audiovisual tracts of interest using probabilistic tractography and compared microstructural properties of these tracts to binocularly intact controls using standard diffusion indices. Results: Although both groups demonstrated asymmetries in indices in intrahemispheric tracts, monocular enucleation participants showed asymmetries opposite to control participants in the auditory and A1-V1 tracts. Monocularenucleation participants also demonstrated significantly lower fractional anisotropy in the audiovisual projections contralateral to the enucleated eye relative to control participants. Conclusions: Partial vision loss from early monocular enucleation results in altered structuralYork University Librarie

    Young children do not integrate visual and haptic information

    Get PDF
    Several studies have shown that adults integrate visual and haptic information (and information from other modalities) in a statistically optimal fashion, weighting each sense according to its reliability. To date no studies have investigated when this capacity for cross-modal integration develops. Here we show that prior to eight years of age, integration of visual and haptic spatial information is far from optimal, with either vision or touch dominating totally, even in conditions where the dominant sense is far less precise than the other (assessed by discrimination thresholds). For size discrimination, haptic information dominates in determining both perceived size and discrimination thresholds, while for orientation discrimination vision dominates. By eight-ten years, the integration becomes statistically optimal, like adults. We suggest that during development, perceptual systems require constant recalibration, for which cross-sensory comparison is important. Using one sense to calibrate the other precludes useful combination of the two sources

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability

    The role of the right temporoparietal junction in perceptual conflict: detection or resolution?

    Get PDF
    The right temporoparietal junction (rTPJ) is a polysensory cortical area that plays a key role in perception and awareness. Neuroimaging evidence shows activation of rTPJ in intersensory and sensorimotor conflict situations, but it remains unclear whether this activity reflects detection or resolution of such conflicts. To address this question, we manipulated the relationship between touch and vision using the so-called mirror-box illusion. Participants' hands lay on either side of a mirror, which occluded their left hand and reflected their right hand, but created the illusion that they were looking directly at their left hand. The experimenter simultaneously touched either the middle (D3) or the ring finger (D4) of each hand. Participants judged, which finger was touched on their occluded left hand. The visual stimulus corresponding to the touch on the right hand was therefore either congruent (same finger as touch) or incongruent (different finger from touch) with the task-relevant touch on the left hand. Single-pulse transcranial magnetic stimulation (TMS) was delivered to the rTPJ immediately after touch. Accuracy in localizing the left touch was worse for D4 than for D3, particularly when visual stimulation was incongruent. However, following TMS, accuracy improved selectively for D4 in incongruent trials, suggesting that the effects of the conflicting visual information were reduced. These findings suggest a role of rTPJ in detecting, rather than resolving, intersensory conflict

    Aging in Multisensory Integration

    Get PDF
    Multisensory integration is the simultaneous processing of multiple sensory inputs into a single percept. The current study aims to further the understanding of multisensory integration across development and the individual contributions of visual and auditory information. Integration was observed using the Sound-Induced Flash Illusion task. In the first experiment, young children, young adults, and older adults participated in a variant of the Sound-Induced Flash Illusion, and found that auditory input had a stronger effect on visual processing than vice versa, and this effect increased with age. Experiment 2 used a similar version of the Sound-Induced Flash Illusion task on young adults, but half of the stimuli were lowered to just above threshold to test if weakened auditory and visual stimuli could account for increased multisensory integration in older adults. It was observed that lowering intensity to above threshold resulted in decreased integration effects. The findings of the current study support auditory dominance literature and the modality appropriateness hypothesis and have implications for many tasks that require the processing of multisensory information.No embargoAcademic Major: Psycholog

    Audio-visual detection benefits in the rat

    Get PDF
    Human psychophysical studies have described multisensory perceptual benefits such as enhanced detection rates and faster reaction times in great detail. However, the neural circuits and mechanism underlying multisensory integration remain difficult to study in the primate brain. While rodents offer the advantage of a range of experimental methodologies to study the neural basis of multisensory processing, rodent studies are still limited due to the small number of available multisensory protocols. We here demonstrate the feasibility of an audio-visual stimulus detection task for rats, in which the animals detect lateralized uni- and multi-sensory stimuli in a two-response forced choice paradigm. We show that animals reliably learn and perform this task. Reaction times were significantly faster and behavioral performance levels higher in multisensory compared to unisensory conditions. This benefit was strongest for dim visual targets, in agreement with classical patterns of multisensory integration, and was specific to task-informative sounds, while uninformative sounds speeded reaction times with little costs for detection performance. Importantly, multisensory benefits for stimulus detection and reaction times appeared at different levels of task proficiency and training experience, suggesting distinct mechanisms inducing these two multisensory benefits. Our results demonstrate behavioral multisensory enhancement in rats in analogy to behavioral patterns known from other species, such as humans. In addition, our paradigm enriches the set of behavioral tasks on which future studies can rely, for example to combine behavioral measurements with imaging or pharmacological studies in the behaving animal or to study changes of integration properties in disease models

    Incidental learning in a multisensory environment across childhood

    Get PDF
    Multisensory information has been shown to modulate attention in infants and facilitate learning in adults, by enhancing the amodal properties of a stimulus. However, it remains unclear whether this translates to learning in a multisensory environment across middle childhood, and particularly in the case of incidental learning. One hundred and eighty-one children aged between 6 and 10 years participated in this study using a novel Multisensory Attention Learning Task (MALT). Participants were asked to respond to the presence of a target stimulus whilst ignoring distractors. Correct target selection resulted in the movement of the target exemplar to either the upper left or right screen quadrant, according to category membership. Category membership was defined either by visual-only, auditory-only or multisensory information. As early as 6 years of age, children demonstrated greater performance on the incidental categorization task following exposure to multisensory audiovisual cues compared to unisensory information. These findings provide important insight into the use of multisensory information in learning, and particularly on incidental category learning. Implications for the deployment of multisensory learning tasks within education across development will be discussed

    Incidental category learning and cognitive load in a multisensory environment across childhood

    Get PDF
    Broadbent, H.J., Osborne, T., Rea, M., Peng, A., Mareschal, D., and Kirkham, N.Z. Multisensory information has been shown to facilitate learning (Bahrick & Lickliter, 2000; Broadbent, White, Mareschal, & Kirkham, 2017; Jordan & Baker, 2011; Shams & Seitz, 2008). However, although research has examined the modulating effect of unisensory and multisensory distractors on multisensory processing, the extent to which a concurrent unisensory or multisensory cognitive load task would interfere with or support multisensory learning remains unclear. This study examined the role of concurrent task modality on incidental category learning in 6- to 10-year-olds. Participants were engaged in a multisensory learning task whilst also performing either a unisensory (visual or auditory only) or multisensory (audiovisual) concurrent task (CT). We found that engaging in an auditory CT led to poorer performance on incidental category learning compared with an audiovisual or visual CT, across groups. In 6-year-olds, category test performance was at chance in the auditory-only CT condition, suggesting auditory concurrent tasks may interfere with learning in younger children, but the addition of visual information may serve to focus attention. These findings provide novel insight into the use of multisensory concurrent information on incidental learning. Implications for the deployment of multisensory learning tasks within education across development and developmental changes in modality dominance and ability to switch flexibly across modalities are discussed. Keywords: Multisensory Integration; Cognitive Development; Incidental Learning; Cognitive Loa
    corecore