4,179 research outputs found

    Selective rendering for efficient ray traced stereoscopic images

    Get PDF
    Depth-related visual effects are a key feature of many virtual environments. In stereo-based systems, the depth effect can be produced by delivering frames of disparate image pairs, while in monocular environments, the viewer has to extract this depth information from a single image by examining details such as perspective and shadows. This paper investigates via a number of psychophysical experiments, whether we can reduce computational effort and still achieve perceptually high-quality rendering for stereo imagery. We examined selectively rendering the image pairs by exploiting the fusing capability and depth perception underlying human stereo vision. In ray-tracing-based global illumination systems, a higher image resolution introduces more computation to the rendering process since many more rays need to be traced. We first investigated whether we could utilise the human binocular fusing ability and significantly reduce the resolution of one of the image pairs and yet retain a high perceptual quality under stereo viewing condition. Secondly, we evaluated subjects' performance on a specific visual task that required accurate depth perception. We found that subjects required far fewer rendered depth cues in the stereo viewing environment to perform the task well. Avoiding rendering these detailed cues saved significant computational time. In fact it was possible to achieve a better task performance in the stereo viewing condition at a combined rendering time for the image pairs less than that required for the single monocular image. The outcome of this study suggests that we can produce more efficient stereo images for depth-related visual tasks by selective rendering and exploiting inherent features of human stereo vision

    Real Virtuality: A Code of Ethical Conduct. Recommendations for Good Scientific Practice and the Consumers of VR-Technology

    Get PDF
    The goal of this article is to present a first list of ethical concerns that may arise from research and personal use of virtual reality (VR) and related technology, and to offer concrete recommendations for minimizing those risks. Many of the recommendations call for focused research initiatives. In the first part of the article, we discuss the relevant evidence from psychology that motivates our concerns. In Section “Plasticity in the Human Mind,” we cover some of the main results suggesting that one’s environment can influence one’s psychological states, as well as recent work on inducing illusions of embodiment. Then, in Section “Illusions of Embodiment and Their Lasting Effect,” we go on to discuss recent evidence indicating that immersion in VR can have psychological effects that last after leaving the virtual environment. In the second part of the article, we turn to the risks and recommendations. We begin, in Section “The Research Ethics of VR,” with the research ethics of VR, covering six main topics: the limits of experimental environments, informed consent, clinical risks, dual-use, online research, and a general point about the limitations of a code of conduct for research. Then, in Section “Risks for Individuals and Society,” we turn to the risks of VR for the general public, covering four main topics: long-term immersion, neglect of the social and physical environment, risky content, and privacy. We offer concrete recommendations for each of these 10 topics, summarized in Table 1

    An experimental comparison of perceived egocentric distance in real, image-based, and traditional virtual environment using direct walking tasks

    Get PDF
    technical reportIn virtual environments, perceived egocentric distances are often underestimated when compared to the same distance judgments in the real world. The research presented in this paper explores two possible causes for this reduced distance perception in virtual environments: (1) real-time computer graphics rendering, and (2) immersive display technology. Our experiment compared egocentric distance judgments in three complex, indoor environments: a real hallway with full-cue conditions; a virtual, stereoscopic, photographic panorama; and a virtual, stereoscopic computer model. Perceived egocentric distance was determined by a directed walking task in which subjects walk blindfolded to the target. Our results show there is a significant difference in distance judgments between real and virtual environments. However, the differences between distance judgments in virtual photographic panorama environments and traditionally rendered virtual environments are small, suggesting that the display device is affecting distance judgments in virtual environments

    FROM CELLULOID REALITIES TO BINARY DREAMSCAPES: CINEMA AND PERCEPTUAL EXPERIENCE IN THE AGE OF DIGITAL IMMERSION

    Get PDF
    Technologies in digital cinema are quickly changing the way contemporary filmmakers create films and how audiences currently perceive them. As we move onward into the digital turn, it becomes ever more apparent that the medium of film has been emancipated from its dependence on the photograph. Directors are no longer required to capture the objectively real as it sits before the photographic lens, but can essentially construct it via groundbreaking advancements in computer-generated imagery, motion capture technology, and digital 3D camera systems and display technologies. Since the origins of film, spectators and filmmakers have assumed an existing relationship between reality and the photographic image. Yet digital film technologies now provide us with hyper-facsimiles of reality that are perceived as photographic, but are often created by way of computer processes. Digital cinema currently allows the viewer to inhabit and interact with cinematic realities in unprecedented ways, and it is this contemporary paradigmatic shift from the analog to the digital that has catalyzed fundamentally new ways of looking at the filmic image. In this paper, I will examine the perceptual complexities of contemporary digital film through the lens of these cinematic technologies by examining their impact on the viewer’s experience

    Virtual Reality system for freely-moving rodents

    Get PDF
    Spatial navigation, active sensing, and most cognitive functions rely on a tight link between motor output and sensory input. Virtual reality (VR) systems simulate the sensorimotor loop, allowing flexible manipulation of enriched sensory input. Conventional rodent VR systems provide 3D visual cues linked to restrained locomotion on a treadmill, leading to a mismatch between visual and most other sensory inputs, sensory-motor conflicts, as well as restricted naturalistic behavior. To rectify these limitations, we developed a VR system (ratCAVE) that provides realistic and low-latency visual feedback directly to head movements of completely unrestrained rodents. Immersed in this VR system, rats displayed naturalistic behavior by spontaneously interacting with and hugging virtual walls, exploring virtual objects, and avoiding virtual cliffs. We further illustrate the effect of ratCAVE-VR manipulation on hippocampal place fields. The newly-developed methodology enables a wide range of experiments involving flexible manipulation of visual feedback in freely-moving behaving animals

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    The perception of emotion in artificial agents

    Get PDF
    Given recent technological developments in robotics, artificial intelligence and virtual reality, it is perhaps unsurprising that the arrival of emotionally expressive and reactive artificial agents is imminent. However, if such agents are to become integrated into our social milieu, it is imperative to establish an understanding of whether and how humans perceive emotion in artificial agents. In this review, we incorporate recent findings from social robotics, virtual reality, psychology, and neuroscience to examine how people recognize and respond to emotions displayed by artificial agents. First, we review how people perceive emotions expressed by an artificial agent, such as facial and bodily expressions and vocal tone. Second, we evaluate the similarities and differences in the consequences of perceived emotions in artificial compared to human agents. Besides accurately recognizing the emotional state of an artificial agent, it is critical to understand how humans respond to those emotions. Does interacting with an angry robot induce the same responses in people as interacting with an angry person? Similarly, does watching a robot rejoice when it wins a game elicit similar feelings of elation in the human observer? Here we provide an overview of the current state of emotion expression and perception in social robotics, as well as a clear articulation of the challenges and guiding principles to be addressed as we move ever closer to truly emotional artificial agents

    Artificial Intelligence: Robots, Avatars and the Demise of the Human Mediator

    Get PDF
    As technology has advanced, many have wondered whether (or simply when) artificial intelligent devices will replace the humans who perform complex, interactive, interpersonal tasks such as dispute resolution. Has science now progressed to the point that artificial intelligence devices can replace human mediators, arbitrators, dispute resolvers and problem solvers? Can humanoid robots, attractive avatars and other relational agents create the requisite level of trust and elicit the truthful, perhaps intimate or painful, disclosures often necessary to resolve a dispute or solve a problem? This article will explore these questions. Regardless of whether the reader is convinced that the demise of the human mediator or arbitrator is imminent, one cannot deny that artificial intelligence now has the capability to assume many of the responsibilities currently being performed by alternative dispute resolution (ADR) practitioners. It is fascinating (and perhaps unsettling) to realize the complexity and seriousness of tasks currently delegated to avatars and robots. This article will review some of those delegations and suggest how the artificial intelligence developed to complete those assignments may be relevant to dispute resolution and problem solving. “Relational Agents,” which can have a physical presence such as a robot, be embodied in an avatar, or have no detectable form whatsoever and exist only as software, are able to create long term socio-economic relationships with users built on trust, rapport and therapeutic goals. Relational agents are interacting with humans in circumstances that have significant consequences in the physical world. These interactions provide insights as to how robots and avatars can participate productively in dispute resolution processes. Can human mediators and arbitrators be replaced by robots and avatars that not only physically resemble humans, but also act, think, and reason like humans? And to raise a particularly interesting question, can robots, avatars and other relational agents look, move, act, think, and reason even “better” than humans
    • …
    corecore