18,595 research outputs found

    Modelling Rod-like Flexible Biological Tissues for Medical Training

    Get PDF
    This paper outlines a framework for the modelling of slender rod-like biological tissue structures in both global and local scales. Volumetric discretization of a rod-like structure is expensive in computation and therefore is not ideal for applications where real-time performance is essential. In our approach, the Cosserat rod model is introduced to capture the global shape changes, which models the structure as a one-dimensional entity, while the local deformation is handled separately. In this way a good balance in accuracy and efficiency is achieved. These advantages make our method appropriate for the modelling of soft tissues for medical training applications

    Smoothness perception : investigation of beat rate effect on frame rate perception

    Get PDF
    Despite the complexity of the Human Visual System (HVS), research over the last few decades has highlighted a number of its limitations. These limitations can be exploited in computer graphics to significantly reduce computational cost and thus required rendering time, without a viewer perceiving any difference in resultant image quality. Furthermore, cross-modal interaction between different modalities, such as the influence of audio on visual perception, has also been shown as significant both in psychology and computer graphics. In this paper we investigate the effect of beat rate on temporal visual perception, i.e. frame rate perception. For the visual quality and perception evaluation, a series of psychophysical experiments was conducted and the data analysed. The results indicate that beat rates in some cases do affect temporal visual perception and that certain beat rates can be used in order to reduce the amount of rendering required to achieve a perceptual high quality. This is another step towards a comprehensive understanding of auditory-visual cross-modal interaction and could be potentially used in high-fidelity interactive multi-sensory virtual environments

    Fidelity metrics for virtual environment simulations based on spatial memory awareness states

    Get PDF
    This paper describes a methodology based on human judgments of memory awareness states for assessing the simulation fidelity of a virtual environment (VE) in relation to its real scene counterpart. To demonstrate the distinction between task performance-based approaches and additional human evaluation of cognitive awareness states, a photorealistic VE was created. Resulting scenes displayed on a headmounted display (HMD) with or without head tracking and desktop monitor were then compared to the real-world task situation they represented, investigating spatial memory after exposure. Participants described how they completed their spatial recollections by selecting one of four choices of awareness states after retrieval in an initial test and a retention test a week after exposure to the environment. These reflected the level of visual mental imagery involved during retrieval, the familiarity of the recollection and also included guesses, even if informed. Experimental results revealed variations in the distribution of participants’ awareness states across conditions while, in certain cases, task performance failed to reveal any. Experimental conditions that incorporated head tracking were not associated with visually induced recollections. Generally, simulation of task performance does not necessarily lead to simulation of the awareness states involved when completing a memory task. The general premise of this research focuses on how tasks are achieved, rather than only on what is achieved. The extent to which judgments of human memory recall, memory awareness states, and presence in the physical and VE are similar provides a fidelity metric of the simulation in question

    EgoFace: Egocentric Face Performance Capture and Videorealistic Reenactment

    No full text
    Face performance capture and reenactment techniques use multiple cameras and sensors, positioned at a distance from the face or mounted on heavy wearable devices. This limits their applications in mobile and outdoor environments. We present EgoFace, a radically new lightweight setup for face performance capture and front-view videorealistic reenactment using a single egocentric RGB camera. Our lightweight setup allows operations in uncontrolled environments, and lends itself to telepresence applications such as video-conferencing from dynamic environments. The input image is projected into a low dimensional latent space of the facial expression parameters. Through careful adversarial training of the parameter-space synthetic rendering, a videorealistic animation is produced. Our problem is challenging as the human visual system is sensitive to the smallest face irregularities that could occur in the final results. This sensitivity is even stronger for video results. Our solution is trained in a pre-processing stage, through a supervised manner without manual annotations. EgoFace captures a wide variety of facial expressions, including mouth movements and asymmetrical expressions. It works under varying illuminations, background, movements, handles people from different ethnicities and can operate in real time

    Applying a User-centred Approach to Interactive Visualization Design

    Get PDF
    Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches
    corecore