2,679 research outputs found

    Salient Object Detection in Video using Deep Non-Local Neural Networks

    Full text link
    Detection of salient objects in image and video is of great importance in many computer vision applications. In spite of the fact that the state of the art in saliency detection for still images has been changed substantially over the last few years, there have been few improvements in video saliency detection. This paper investigates the use of recently introduced non-local neural networks in video salient object detection. Non-local neural networks are applied to capture global dependencies and hence determine the salient objects. The effect of non-local operations is studied separately on static and dynamic saliency detection in order to exploit both appearance and motion features. A novel deep non-local neural network architecture is introduced for video salient object detection and tested on two well-known datasets DAVIS and FBMS. The experimental results show that the proposed algorithm outperforms state-of-the-art video saliency detection methods.Comment: Submitted to Journal of Visual Communication and Image Representatio

    Excitation Backprop for RNNs

    Full text link
    Deep models are state-of-the-art for many vision tasks including video action recognition and video captioning. Models are trained to caption or classify activity in videos, but little is known about the evidence used to make such decisions. Grounding decisions made by deep networks has been studied in spatial visual content, giving more insight into model predictions for images. However, such studies are relatively lacking for models of spatiotemporal visual content - videos. In this work, we devise a formulation that simultaneously grounds evidence in space and time, in a single pass, using top-down saliency. We visualize the spatiotemporal cues that contribute to a deep model's classification/captioning output using the model's internal representation. Based on these spatiotemporal cues, we are able to localize segments within a video that correspond with a specific action, or phrase from a caption, without explicitly optimizing/training for these tasks.Comment: CVPR 2018 Camera Ready Versio

    Benchmark 3D eye-tracking dataset for visual saliency prediction on stereoscopic 3D video

    Full text link
    Visual Attention Models (VAMs) predict the location of an image or video regions that are most likely to attract human attention. Although saliency detection is well explored for 2D image and video content, there are only few attempts made to design 3D saliency prediction models. Newly proposed 3D visual attention models have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2D image and video content. In the case of 3D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3D-VAMs. In this paper, we introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3D videos (and also 2D versions of those) and 24 subjects participated in a free-viewing test. We evaluate the performance of the existing saliency detection methods over the proposed dataset. In addition, we created an online benchmark for validating the performance of the existing 2D and 3D visual attention models and facilitate addition of new VAMs to the benchmark. Our benchmark currently contains 50 different VAMs

    Unsupervised Video Analysis Based on a Spatiotemporal Saliency Detector

    Full text link
    Visual saliency, which predicts regions in the field of view that draw the most visual attention, has attracted a lot of interest from researchers. It has already been used in several vision tasks, e.g., image classification, object detection, foreground segmentation. Recently, the spectrum analysis based visual saliency approach has attracted a lot of interest due to its simplicity and good performance, where the phase information of the image is used to construct the saliency map. In this paper, we propose a new approach for detecting spatiotemporal visual saliency based on the phase spectrum of the videos, which is easy to implement and computationally efficient. With the proposed algorithm, we also study how the spatiotemporal saliency can be used in two important vision task, abnormality detection and spatiotemporal interest point detection. The proposed algorithm is evaluated on several commonly used datasets with comparison to the state-of-art methods from the literature. The experiments demonstrate the effectiveness of the proposed approach to spatiotemporal visual saliency detection and its application to the above vision tasksComment: 21 page

    Digging Deeper into Egocentric Gaze Prediction

    Full text link
    This paper digs deeper into factors that influence egocentric gaze. Instead of training deep models for this purpose in a blind manner, we propose to inspect factors that contribute to gaze guidance during daily tasks. Bottom-up saliency and optical flow are assessed versus strong spatial prior baselines. Task-specific cues such as vanishing point, manipulation point, and hand regions are analyzed as representatives of top-down information. We also look into the contribution of these factors by investigating a simple recurrent neural model for ego-centric gaze prediction. First, deep features are extracted for all input video frames. Then, a gated recurrent unit is employed to integrate information over time and to predict the next fixation. We also propose an integrated model that combines the recurrent model with several top-down and bottom-up cues. Extensive experiments over multiple datasets reveal that (1) spatial biases are strong in egocentric videos, (2) bottom-up saliency models perform poorly in predicting gaze and underperform spatial biases, (3) deep features perform better compared to traditional features, (4) as opposed to hand regions, the manipulation point is a strong influential cue for gaze prediction, (5) combining the proposed recurrent model with bottom-up cues, vanishing points and, in particular, manipulation point results in the best gaze prediction accuracy over egocentric videos, (6) the knowledge transfer works best for cases where the tasks or sequences are similar, and (7) task and activity recognition can benefit from gaze prediction. Our findings suggest that (1) there should be more emphasis on hand-object interaction and (2) the egocentric vision community should consider larger datasets including diverse stimuli and more subjects.Comment: presented at WACV 201

    Spatially Supervised Recurrent Convolutional Neural Networks for Visual Object Tracking

    Full text link
    In this paper, we develop a new approach of spatially supervised recurrent convolutional neural networks for visual object tracking. Our recurrent convolutional network exploits the history of locations as well as the distinctive visual features learned by the deep neural networks. Inspired by recent bounding box regression methods for object detection, we study the regression capability of Long Short-Term Memory (LSTM) in the temporal domain, and propose to concatenate high-level visual features produced by convolutional networks with region information. In contrast to existing deep learning based trackers that use binary classification for region candidates, we use regression for direct prediction of the tracking locations both at the convolutional layer and at the recurrent unit. Our extensive experimental results and performance comparison with state-of-the-art tracking methods on challenging benchmark video tracking datasets shows that our tracker is more accurate and robust while maintaining low computational cost. For most test video sequences, our method achieves the best tracking performance, often outperforms the second best by a large margin.Comment: 10 pages, 9 figures, conferenc

    Graph-Theoretic Spatiotemporal Context Modeling for Video Saliency Detection

    Full text link
    As an important and challenging problem in computer vision, video saliency detection is typically cast as a spatiotemporal context modeling problem over consecutive frames. As a result, a key issue in video saliency detection is how to effectively capture the intrinsical properties of atomic video structures as well as their associated contextual interactions along the spatial and temporal dimensions. Motivated by this observation, we propose a graph-theoretic video saliency detection approach based on adaptive video structure discovery, which is carried out within a spatiotemporal atomic graph. Through graph-based manifold propagation, the proposed approach is capable of effectively modeling the semantically contextual interactions among atomic video structures for saliency detection while preserving spatial smoothness and temporal consistency. Experiments demonstrate the effectiveness of the proposed approach over several benchmark datasets.Comment: ICIP 201

    Spatiotemporal Knowledge Distillation for Efficient Estimation of Aerial Video Saliency

    Full text link
    The performance of video saliency estimation techniques has achieved significant advances along with the rapid development of Convolutional Neural Networks (CNNs). However, devices like cameras and drones may have limited computational capability and storage space so that the direct deployment of complex deep saliency models becomes infeasible. To address this problem, this paper proposes a dynamic saliency estimation approach for aerial videos via spatiotemporal knowledge distillation. In this approach, five components are involved, including two teachers, two students and the desired spatiotemporal model. The knowledge of spatial and temporal saliency is first separately transferred from the two complex and redundant teachers to their simple and compact students, and the input scenes are also degraded from high-resolution to low-resolution to remove the probable data redundancy so as to greatly speed up the feature extraction process. After that, the desired spatiotemporal model is further trained by distilling and encoding the spatial and temporal saliency knowledge of two students into a unified network. In this manner, the inter-model redundancy can be further removed for the effective estimation of dynamic saliency on aerial videos. Experimental results show that the proposed approach outperforms ten state-of-the-art models in estimating visual saliency on aerial videos, while its speed reaches up to 28,738 FPS on the GPU platform

    Spatiotemporal CNN for Video Object Segmentation

    Full text link
    In this paper, we present a unified, end-to-end trainable spatiotemporal CNN model for VOS, which consists of two branches, i.e., the temporal coherence branch and the spatial segmentation branch. Specifically, the temporal coherence branch pretrained in an adversarial fashion from unlabeled video data, is designed to capture the dynamic appearance and motion cues of video sequences to guide object segmentation. The spatial segmentation branch focuses on segmenting objects accurately based on the learned appearance and motion cues. To obtain accurate segmentation results, we design a coarse-to-fine process to sequentially apply a designed attention module on multi-scale feature maps, and concatenate them to produce the final prediction. In this way, the spatial segmentation branch is enforced to gradually concentrate on object regions. These two branches are jointly fine-tuned on video segmentation sequences in an end-to-end manner. Several experiments are carried out on three challenging datasets (i.e., DAVIS-2016, DAVIS-2017 and Youtube-Object) to show that our method achieves favorable performance against the state-of-the-arts. Code is available at https://github.com/longyin880815/STCNN.Comment: 10 pages, 3 figures, 6 tables, CVPR 201

    A Survey on Content-Aware Video Analysis for Sports

    Full text link
    Sports data analysis is becoming increasingly large-scale, diversified, and shared, but difficulty persists in rapidly accessing the most crucial information. Previous surveys have focused on the methodologies of sports video analysis from the spatiotemporal viewpoint instead of a content-based viewpoint, and few of these studies have considered semantics. This study develops a deeper interpretation of content-aware sports video analysis by examining the insight offered by research into the structure of content under different scenarios. On the basis of this insight, we provide an overview of the themes particularly relevant to the research on content-aware systems for broadcast sports. Specifically, we focus on the video content analysis techniques applied in sportscasts over the past decade from the perspectives of fundamentals and general review, a content hierarchical model, and trends and challenges. Content-aware analysis methods are discussed with respect to object-, event-, and context-oriented groups. In each group, the gap between sensation and content excitement must be bridged using proper strategies. In this regard, a content-aware approach is required to determine user demands. Finally, the paper summarizes the future trends and challenges for sports video analysis. We believe that our findings can advance the field of research on content-aware video analysis for broadcast sports.Comment: Accepted for publication in IEEE Transactions on Circuits and Systems for Video Technology (TCSVT
    • …
    corecore