71,664 research outputs found

    Visual Analysis of Pressure in Football

    Get PDF
    Modern movement tracking technologies enable acquisition of high quality data about movements of the players and the ball in the course of a football match. However, there is a big difference between the raw data and the insights into team behaviors that analysts would like to gain. To enable such insights, it is necessary first to establish relationships between the concepts characterizing behaviors and what can be extracted from data. This task is challenging since the concepts are not strictly defined. We propose a computational approach to detecting and quantifying the relationships of pressure emerging during a game. Pressure is exerted by defending players upon the ball and the opponents. Pressing behavior of a team consists of multiple instances of pressure exerted by the team members. The extracted pressure relationships can be analyzed in detailed and summarized forms with the use of static and dynamic visualizations and interactive query tools. To support examination of team tactics in different situations, we have designed and implemented a novel interactive visual tool “time mask”. It enables selection of multiple disjoint time intervals in which given conditions are fulfilled. Thus, it is possible to select game situations according to ball possession, ball distance to the goal, time that has passed since the last ball possession change or remaining time before the next change, density of players’ positions, or various other conditions. In response to a query, the analyst receives visual and statistical summaries of the set of selected situations and can thus perform joint analysis of these situations. We give examples of applying the proposed combination of computational, visual, and interactive techniques to real data from games in the German Bundesliga, where the teams actively used pressing in their defense tactics

    Eye quietness and quiet eye in expert and novice golf performance: an electrooculographic analysis

    Get PDF
    Quiet eye (QE) is the final ocular fixation on the target of an action (e.g., the ball in golf putting). Camerabased eye-tracking studies have consistently found longer QE durations in experts than novices; however, mechanisms underlying QE are not known. To offer a new perspective we examined the feasibility of measuring the QE using electrooculography (EOG) and developed an index to assess ocular activity across time: eye quietness (EQ). Ten expert and ten novice golfers putted 60 balls to a 2.4 m distant hole. Horizontal EOG (2ms resolution) was recorded from two electrodes placed on the outer sides of the eyes. QE duration was measured using a EOG voltage threshold and comprised the sum of the pre-movement and post-movement initiation components. EQ was computed as the standard deviation of the EOG in 0.5 s bins from –4 to +2 s, relative to backswing initiation: lower values indicate less movement of the eyes, hence greater quietness. Finally, we measured club-ball address and swing durations. T-tests showed that total QE did not differ between groups (p = .31); however, experts had marginally shorter pre-movement QE (p = .08) and longer post-movement QE (p < .001) than novices. A group × time ANOVA revealed that experts had less EQ before backswing initiation and greater EQ after backswing initiation (p = .002). QE durations were inversely correlated with EQ from –1.5 to 1 s (rs = –.48 - –.90, ps = .03 - .001). Experts had longer swing durations than novices (p = .01) and, importantly, swing durations correlated positively with post-movement QE (r = .52, p = .02) and negatively with EQ from 0.5 to 1s (r = –.63, p = .003). This study demonstrates the feasibility of measuring ocular activity using EOG and validates EQ as an index of ocular activity. Its findings challenge the dominant perspective on QE and provide new evidence that expert-novice differences in ocular activity may reflect differences in the kinematics of how experts and novices execute skills

    Neurocognitive findings in adults who played youth football

    Full text link
    Chronic Traumatic Encephalopathy (CTE) has been linked to contact sports, most notably boxing and American football, due to their propensity for repetitive head impacts. Concerns in the community for the safety of athletes in all contact sports has driven a significant amount of research into concussions, their long term effects, and strategies for treatment and prevention. Knowledge of long term brain health in response to neurotrauma is limited, a gap especially noticeable in the literature on non-catastrophic brain injuries sustained as a child. Concussion is a common injury that is often self-resolving with no lasting neurologic or cognitive deficits. Although repetitive brain trauma is hypothesized to be necessary and sufficient to lead to CTE, no human or animal models have definitively demonstrated the pathophysiologic connection or confirmed the mechanism of symptoms. The research to date has been case based, lacking prospective cohorts, with data complicated by convenience sampling. These factors limit the generalizability of conclusions. CTE is neuropathologically defined with variable symptoms; however, it is only diagnosable at postmortem autopsy making the etiology and prevalence difficult to understand. As more research is published to understand if there is an association between a neurocognitive degenerative disease and contact sports, the concentration is on professional athletes. Yet professional athletes do not represent the overwhelming majority of all contact sport participants. The proposed study will compare adults who participated in youth football, but not beyond the high school level, to a control group of adults who did not play contact sports. Evaluating their cognitive function with an online assessment, the Behavior Rating Inventory of Executive Function – Adult Version (BRIEF-A), data will be analyzed for signs of clinical cognitive impairment. The objective is to measure adults who represent the high percentage of youth football players who do not continue to the advanced levels. Data obtained from this study will help communities make informed decisions, and create the foundation for future studies on long term benefits and risks of contact sports for children

    Exploring children’s perceptions of their local environment in relation to time spent outside

    Get PDF
    This study aims to understand how children perceive their environment, exploring the affordances children perceive to influence their physical activity (PA) behaviour when outside. Participants included boys and girls aged 10–12 years (n = 15) living in Scotland. Children's visual and verbal representations of their perceived environment were analysed to assess environmental determinants of PA. The findings suggested that physical affordances that offer a sense of risk were important to children's play spaces. Social affordances influenced where the children went in their environment and the features they utilised as part of play behaviour; strangers were considered threatening depending on whether the activity was recognised

    Visual exploratory activity in youth soccer players

    Get PDF

    Examining College Student Athlete Attitudes Towards Concussion Testing and Reporting Concussions

    Get PDF
    Examining College Student Athlete Attitudes and Behaviors Toward Baseline Neurocognitive Concussion Testing FryK, Anderson, M, Anderson, M, Schatz, P, Elbin, RJ: University of Arkansas, Fayetteville, Arkansas Context: Examining athletes’ attitudes toward concussion diagnosis, management, and treatment can lead to improved multi-faceted management of a concussion injury. Although attitudes towards concussion injuries have been studied, the examination of athletes’ attitudes towards baseline computerized neurocognitive testing is understudied and is warranted. Objective: To examine the relationship between sex, concussion history, and previous exposure to baseline testing on athletes’ perceptions of effort provided during baseline testing and the utility of neurocognitive testing. Methods: College athletes (18-23 years) completing a baseline neurocognitive test (Immediate Post-Concussion Assessment and Cognitive Test: ImPACT) were asked to complete an anonymous 33-item online survey. Survey questions included demographics and inquired about athletes’ effort and utility of baseline and post-concussion neurocognitive testing. A series of chi-square analyses measured the association between sex, concussion history, and previous exposure to baseline testing on effort provided during testing and utility of the test. Level of statistical significance was p \u3c .05. Results: One hundred eighty-two (88 males, 95 females) athletes (M =19.05, SD = 1.15 years) completed the survey. Thirty-eight percent (70/183) reported prior concussion history and 27% (50/182) were first time test takers. Ninety-four percent (172/183) reported providing above average to maximal effort on the baseline test they completed prior to completing the survey. Ninety percent (158/176) and 87% (156/179) of the sample reported that the baseline and post-concussion test results were useful in mitigating premature return to play, respectively. There was no association between sex, concussion history, or previous exposure to baseline testing on reported effort or perceptions of utility for baseline neurocognitive testing (p \u3e .05). Conclusion: The majority of athletes report high effort on baseline neurocognitive testing and recognize the utility of this measure for safe return to play

    Spatial movement pattern recognition in soccer based on relative player movements

    Get PDF
    Knowledge of spatial movement patterns in soccer occurring on a regular basis can give a soccer coach, analyst or reporter insights in the playing style or tactics of a group of players or team. Furthermore, it can support a coach to better prepare for a soccer match by analysing (trained) movement patterns of both his own as well as opponent players. We explore the use of the Qualitative Trajectory Calculus (QTC), a spatiotemporal qualitative calculus describing the relative movement between objects, for spatial movement pattern recognition of players movements in soccer. The proposed method allows for the recognition of spatial movement patterns that occur on different parts of the field and/or at different spatial scales. Furthermore, the Levenshtein distance metric supports the recognition of similar movements that occur at different speeds and enables the comparison of movements that have different temporal lengths. We first present the basics of the calculus, and subsequently illustrate its applicability with a real soccer case. To that end, we present a situation where a user chooses the movements of two players during 20 seconds of a real soccer match of a 2016-2017 professional soccer competition as a reference fragment. Following a pattern matching procedure, we describe all other fragments with QTC and calculate their distance with the QTC representation of the reference fragment. The top-k most similar fragments of the same match are presented and validated by means of a duo-trio test. The analyses show the potential of QTC for spatial movement pattern recognition in soccer

    Change management: The case of the elite sport performance team

    Get PDF
    The effective and efficient implementation of change is often required for both successful performance and management survival across a host of contemporary domains. However, although of major theoretical and practical significance, research to date has overlooked the application of change management (hereafter CM) knowledge to the elite sport performance team environment. Considering that the success of ‘off-field’ sports businesses are largely dependent on the performances of their ‘on-field’ team, this article explores the application of current CM theorizing to this specific setting and the challenges facing its utility. Accordingly, we identify the need and importance of developing theory specific to this area, with practical application in both sport and business, through examination of current knowledge and identification of the domain's unique, dynamic and contested properties. Markers of successful change are then suggested to guide initial enquiry before the article concludes with proposed lines of research which may act to provide a valid and comprehensive theoretical account of CM to optimize the research and practice of those working in the field

    GPS analysis of a team competing at a national Under 18 field hockey tournament

    Get PDF
    The purpose of this study was to utilise global-positioning system (GPS) technology to quantify the running demands of national Under 18 field hockey players competing in a regional field hockey tournament. Ten male players (mean ± SD; age 17.2 ± 0.4 years; stature 178.1 ± 5.2 cm; body mass 78.8 ± 8.8 kg) wore GPS units while competing in six matches over seven days at the 2018 New Zealand national under 18 field hockey tournament. GPS enabled the measurement of total distance (TD), low-speed activity (LSA; 0 -14.9 km/hr), and high-speed running (HSR; ≥ 15 km/hr) distances. Differences in running demands (TD, LSA, HSR) between positions were assessed using effect size and percent difference ± 90% confidence intervals. Midfielders covered the most TD and LSA per game and strikers the most HSR during the 6 matches. There were “very large” differences between strikers and midfielders for TD and LSA, strikers and defenders for LSA and HSR, and defenders and midfielders for LSA. These results suggest that these playing positions are sufficiently different to warrant specialised position-specific conditioning training leading into a field hockey tournament
    corecore