5,990 research outputs found

    Understanding trade pathways to target biosecurity surveillance

    Get PDF
    Increasing trends in global trade make it extremely difficult to prevent the entry of all potential invasive species (IS). Establishing early detection strategies thus becomes an important part of the continuum used to reduce the introduction of invasive species. One part necessary to ensure the success of these strategies is the determination of priority survey areas based on invasion pressure. We used a pathway-centred conceptual model of pest invasion to address these questions: what role does global trade play in invasion pressure of plant ecosystems and how could an understanding of this role be used to enhance early detection strategies? We concluded that the relative level of invasion pressure for destination ecosystems can be influenced by the intensity of pathway usage (import volume and frequency), the number and type of pathways with a similar destination, and the number of different ecological regions that serve as the source for imports to the same destination. As these factors increase, pressure typically intensifies because of increasing a) propagule pressure, b) likelihood of transporting pests with higher intrinsic invasion potential, and c) likelihood of transporting pests into ecosystems with higher invasibility. We used maritime containerized imports of live plants into the contiguous U.S. as a case study to illustrate the practical implications of the model to determine hotspot areas of relative invasion pressure for agricultural and forest ecosystems (two ecosystems with high potential invasibility). Our results illustrated the importance of how a pathway-centred model could be used to highlight potential target areas for early detection strategies for IS. Many of the hotspots in agricultural and forest ecosystems were within major U.S. metropolitan areas. Invasion ecologists can utilize pathway-centred conceptual models to a) better understand the role of human-mediated pathways in pest establishment, b) enhance current methodologies for IS risk analysis, and c) develop strategies for IS early detection-rapid response programs

    Tree species selection for land rehabilitation in Ethiopia: from fragmented knowledge to an integrated multi-criteria decision approach

    Get PDF
    Dryland regions worldwide are increasingly suffering from losses of soil and biodiversity as a consequence of land degradation. Integrated conservation, rehabilitation and community-based management of natural resources are therefore of vital importance. Local planting efforts should focus on species performing a wide range of functions. Too often however, unsuitable tree species are planted when both ecological suitability for the targeted area or preferences of local stakeholders are not properly taken into account during selection. To develop a decision support tool for multi-purpose species selection, first information needs to be pooled on species-specific ranges, characteristics and functions for a set of potentially valuable species. In this study such database has been developed for the highly degraded northern Ethiopian highlands, using a unique combination of information sources, and with particular attention for local ecological knowledge and preferences. A set of candidate tree species and potentially relevant criteria, a flexible input database with species performance scores upon these criteria, and a ready-to-use multi-criteria decision support tool are presented. Two examples of species selection under different scenarios have been worked out in detail, with highest scores obtained for Cordia africana and Dodonaea angustifolia, as well as Eucalyptus spp., Acacia abyssinica, Acacia saligna, Olea europaea and Faidherbia albida. Sensitivity to criteria weights, and reliability and lack of knowledge on particular species attributes remain constraints towards applicability, particularly when many species are jointly evaluated. Nonetheless, the amount and diversity of the knowledge pooled in the presented database is high, covering 91 species and 45 attributes

    A Comprehensive Review on Intelligent Techniques in Crop Pests and Diseases

    Get PDF
    Artificial intelligence (AI) has transformative potential in the agricultural sector, particularly in managing and preventing crop diseases and pest infestations. This review discusses the significance of early detection and precise diagnosis of various AI tools and techniques for disease identification, such as image processing, machine learning, and deep learning. It also addresses the challenges of AI implementation in agriculture, including data quality, costs, and ethical concerns. The analysis classifies the hurdles and AI offers benefits such as improved resource management, timely interventions, and enhanced productivity. Collaborative efforts are essential to harness AI's potential for sustainable and resilient agriculture
    • …
    corecore