135,682 research outputs found

    StructMatrix: large-scale visualization of graphs by means of structure detection and dense matrices

    Get PDF
    Given a large-scale graph with millions of nodes and edges, how to reveal macro patterns of interest, like cliques, bi-partite cores, stars, and chains? Furthermore, how to visualize such patterns altogether getting insights from the graph to support wise decision-making? Although there are many algorithmic and visual techniques to analyze graphs, none of the existing approaches is able to present the structural information of graphs at large-scale. Hence, this paper describes StructMatrix, a methodology aimed at high-scalable visual inspection of graph structures with the goal of revealing macro patterns of interest. StructMatrix combines algorithmic structure detection and adjacency matrix visualization to present cardinality, distribution, and relationship features of the structures found in a given graph. We performed experiments in real, large-scale graphs with up to one million nodes and millions of edges. StructMatrix revealed that graphs of high relevance (e.g., Web, Wikipedia and DBLP) have characterizations that reflect the nature of their corresponding domains; our findings have not been seen in the literature so far. We expect that our technique will bring deeper insights into large graph mining, leveraging their use for decision making.Comment: To appear: 8 pages, paper to be published at the Fifth IEEE ICDM Workshop on Data Mining in Networks, 2015 as Hugo Gualdron, Robson Cordeiro, Jose Rodrigues (2015) StructMatrix: Large-scale visualization of graphs by means of structure detection and dense matrices In: The Fifth IEEE ICDM Workshop on Data Mining in Networks 1--8, IEE

    Intelligent multimedia indexing and retrieval through multi-source information extraction and merging

    Get PDF
    This paper reports work on automated meta-data\ud creation for multimedia content. The approach results\ud in the generation of a conceptual index of\ud the content which may then be searched via semantic\ud categories instead of keywords. The novelty\ud of the work is to exploit multiple sources of\ud information relating to video content (in this case\ud the rich range of sources covering important sports\ud events). News, commentaries and web reports covering\ud international football games in multiple languages\ud and multiple modalities is analysed and the\ud resultant data merged. This merging process leads\ud to increased accuracy relative to individual sources

    Evaluation of two interaction techniques for visualization of dynamic graphs

    Full text link
    Several techniques for visualization of dynamic graphs are based on different spatial arrangements of a temporal sequence of node-link diagrams. Many studies in the literature have investigated the importance of maintaining the user's mental map across this temporal sequence, but usually each layout is considered as a static graph drawing and the effect of user interaction is disregarded. We conducted a task-based controlled experiment to assess the effectiveness of two basic interaction techniques: the adjustment of the layout stability and the highlighting of adjacent nodes and edges. We found that generally both interaction techniques increase accuracy, sometimes at the cost of longer completion times, and that the highlighting outclasses the stability adjustment for many tasks except the most complex ones.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore