7,350 research outputs found

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for ā€œnot only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skinā€ (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Labā€™s Physics and Media Group, argues, ā€œThe world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worldsā€ (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    The challenges of mobile devices for human computer interaction

    Get PDF
    Current mobile computing devices such as palmtop computers, personal digital assistants (PDAs) and mobile phones, and future devices such as Bluetooth and GSM enabled cameras, and music players have many implications for the design of the user interface. These devices share a common problem: attempting to give users access to powerful computing services and resources through small interfaces, which typically have tiny visual displays, poor audio interaction facilities and limited input techniques. They also introduce new challenges such as designing for intermittent and expensive network access, and design for position awareness and context sensitivity. No longer can designers base computing designs around the traditional model of a single user working with a personal computer at his/her workplace. In addition to mobility and size requirements, mobile devices will also typically be used by a larger population spread than traditional PCs and without any training or support networks, whether formal or informal. Furthermore, unlike early computers which had many users per computer, and PCs with usually one computer per user, a single user is likely to own many mobiles devices [1] which they interact with indifferent ways and for different tasks

    Factors influencing visual attention switch in multi-display user interfaces: a survey

    Get PDF
    Multi-display User Interfaces (MDUIs) enable people to take advantage of the different characteristics of different display categories. For example, combining mobile and large displays within the same system enables users to interact with user interface elements locally while simultaneously having a large display space to show data. Although there is a large potential gain in performance and comfort, there is at least one main drawback that can override the benefits of MDUIs: the visual and physical separation between displays requires that users perform visual attention switches between displays. In this paper, we present a survey and analysis of existing data and classifications to identify factors that can affect visual attention switch in MDUIs. Our analysis and taxonomy bring attention to the often ignored implications of visual attention switch and collect existing evidence to facilitate research and implementation of effective MDUIs.Postprin

    Reading with new tools: An evaluation of Personal Digital Assistants as tools for reading course materials

    Get PDF
    Lightweight, palmtop devices such as personal digital assistants (PDAs) can now be used for reading electronic text, opening up their potential as learning tools. This paper reports a study that evaluated the use of PDAs for reading course materials by students on an Open University master's course. The research is grounded in activity theory, which provides a useful framework for examining how the introduction of a new tool changes an existing activity. Student perceptions of the possibilities and constraints of the PDA, as determined by questionnaires and interviews, reveal the impact the new tool had upon reading. The PDA constrained reading with limitations such as the small screen size, new requirements for navigating through the text and awkward methods for taking notes. These conditions made it difficult for students to skimā€read the text, to move back and forth within the document and to interact with the text as easily as they could with paper. Nevertheless, students welcomed the opportunity to have the course materials on a portable, lightweight device that could be used at any time and in any place. This made it easier to fit the reading activity around the various other activities in which students were involved In addition, the PDA was used in conjunction with existing tools, such as the printed version of the course materials and the desktop computer. Therefore, it was not seen to replace paper but rather to extend and complement it. The findings are discussed using concepts from activity theory to interpret how the new tool modified the reading activity

    VISUALISE: Enhancing the spectator experience

    Get PDF

    Semi-automated creation of converged iTV services: From macromedia director simulations to services ready for broadcast

    Get PDF
    While sound and video may capture viewersā€™ attention, interaction can captivate them. This has not been available prior to the advent of Digital Television. In fact, what lies at the heart of the Digital Television revolution is this new type of interactive content, offered in the form of interactive Television (iTV) services. On top of that, the new world of converged networks has created a demand for a new type of converged services on a range of mobile terminals (Tablet PCs, PDAs and mobile phones). This paper aims at presenting a new approach to service creation that allows for the semi-automatic translation of simulations and rapid prototypes created in the accessible desktop multimedia authoring package Macromedia Director into services ready for broadcast. This is achieved by a series of tools that de-skill and speed-up the process of creating digital TV user interfaces (UI) and applications for mobile terminals. The benefits of rapid prototyping are essential for the production of these new types of services, and are therefore discussed in the first section of this paper. In the following sections, an overview of the operation of content, service, creation and management sub-systems is presented, which illustrates why these tools compose an important and integral part of a system responsible of creating, delivering and managing converged broadcast and telecommunications services. The next section examines a number of metadata languages candidates for describing the iTV services user interface and the schema language adopted in this project. A detailed description of the operation of the two tools is provided to offer an insight of how they can be used to de-skill and speed-up the process of creating digital TV user interfaces and applications for mobile terminals. Finally, representative broadcast oriented and telecommunication oriented converged service components are also introduced, demonstrating how these tools have been used to generate different types of services

    Direct combination: a new user interaction principle for mobile and ubiquitous HCI

    Get PDF
    Direct Combination (DC) is a recently introduced user interaction principle. The principle (previously applied to desktop computing) can greatly reduce the degree of search, time, and attention required to operate user interfaces. We argue that Direct Combination applies particularly aptly to mobile computing devices, given appropriate interaction techniques, examples of which are presented here. The reduction in search afforded to users can be applied to address several issues in mobile and ubiquitous user interaction including: limited feedback bandwidth; minimal attention situations; and the need for ad-hoc spontaneous interoperation and dynamic reconfiguration of multiple devices. When Direct Combination is extended and adapted to fit the demands of mobile and ubiquitous HCI, we refer to it as Ambient Combination (AC) . Direct Combination allows the user to exploit objects in the environment to narrow down the range of interactions that need be considered (by system and user). When the DC technique of pairwise or n-fold combination is applicable, it can greatly lessen the demands on users for memorisation and interface navigation. Direct Combination also appears to offers a new way of applying context-aware information. In this paper, we present Direct Combination as applied ambiently through a series of interaction scenarios, using an implemented prototype system

    Supporting searching on small screen devices using summarisation

    Get PDF
    In recent years, small screen devices have seen widespread increase in their acceptance and use. Combining mobility with their increased technological advances many such devices can now be considered mobile information terminals. However, user interactions with small screen devices remain a challenge due to the inherent limited display capabilities. These challenges are particularly evident for tasks, such as information seeking. In this paper we assess the effectiveness of using hierarchical-query biased summaries as a means of supporting the results of an information search conducted on a small screen device, a PDA. We present the results of an experiment focused on measuring users' perception of relevance of displayed documents, in the form of automatically generated summaries of increasing length, in response to a simulated submitted query. The aim is to study experimentally how users' perception of relevance varies depending on the length of summary, in relation to the characteristics of the PDA interface on which the content is presented. Experimental results suggest that hierarchical query-biased summaries are useful and assist users in making relevance judgments

    SensorShoe: Mobile Gait Analysis for Parkinson's Disease Patients

    Get PDF
    We present the design and initial evaluation of a mobile gait analysis system, SensorShoe. The target user group is represented by Parkinson's Disease patients, which need continuous assistance with the physical therapy in their home environment. SensorShoe analyses the gait by using a low-power sensor node equipped with movement sensors. In addition, SensorShoe gives real-time feedback and therapy assistance to the patient, and provides the caregivers an effective remote monitoring and control tool
    • ā€¦
    corecore