9,833 research outputs found

    Visual tracking via spatially aligned correlation filters network

    Get PDF
    Correlation filters based trackers rely on a periodic assumption of the search sample to efficiently distinguish the target from the background. This assumption however yields undesired boundary effects and restricts aspect ratios of search samples. To handle these issues, an end-to-end deep architecture is proposed to incorporate geometric transformations into a correlation filters based network. This architecture introduces a novel spatial alignment module, which provides continuous feedback for transforming the target from the border to the center with a normalized aspect ratio. It enables correlation filters to work on well-aligned samples for better tracking. The whole architecture not only learns a generic relationship between object geometric transformations and object appearances, but also learns robust representations coupled to correlation filters in case of various geometric transformations. This lightweight architecture permits real-time speed. Experiments show our tracker effectively handles boundary effects and aspect ratio variations, achieving state-of-the-art tracking results on recent benchmarks

    End-to-end Flow Correlation Tracking with Spatial-temporal Attention

    Full text link
    Discriminative correlation filters (DCF) with deep convolutional features have achieved favorable performance in recent tracking benchmarks. However, most of existing DCF trackers only consider appearance features of current frame, and hardly benefit from motion and inter-frame information. The lack of temporal information degrades the tracking performance during challenges such as partial occlusion and deformation. In this work, we focus on making use of the rich flow information in consecutive frames to improve the feature representation and the tracking accuracy. Firstly, individual components, including optical flow estimation, feature extraction, aggregation and correlation filter tracking are formulated as special layers in network. To the best of our knowledge, this is the first work to jointly train flow and tracking task in a deep learning framework. Then the historical feature maps at predefined intervals are warped and aggregated with current ones by the guiding of flow. For adaptive aggregation, we propose a novel spatial-temporal attention mechanism. Extensive experiments are performed on four challenging tracking datasets: OTB2013, OTB2015, VOT2015 and VOT2016, and the proposed method achieves superior results on these benchmarks.Comment: Accepted in CVPR 201

    Deep Convolutional Correlation Iterative Particle Filter for Visual Tracking

    Full text link
    This work proposes a novel framework for visual tracking based on the integration of an iterative particle filter, a deep convolutional neural network, and a correlation filter. The iterative particle filter enables the particles to correct themselves and converge to the correct target position. We employ a novel strategy to assess the likelihood of the particles after the iterations by applying K-means clustering. Our approach ensures a consistent support for the posterior distribution. Thus, we do not need to perform resampling at every video frame, improving the utilization of prior distribution information. Experimental results on two different benchmark datasets show that our tracker performs favorably against state-of-the-art methods.Comment: 28 pages, 9 figures, 1 tabl

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State Vowel Identification

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    • …
    corecore