4 research outputs found

    Optogenetic feedback control of neural activity

    Get PDF
    Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner.National Science Foundation (U.S.). Graduate Research FellowshipNational Science Foundation (U.S.). Integrative Graduate Education and Research Traineeshi

    Kinetic energy fluctuation-driven locomotor transitions on potential energy landscapes of beam obstacle traversal and ground self-righting

    Get PDF
    Animals’ physical interaction with their environment, although often difficult, is effective and enables them to move robustly by using and transitioning between different modes such as running and climbing. Although robots exhibit some of these transitions, we lack a principled approach to generating and controlling them using effective physical interaction. Bridging this knowledge gap, in addition to advancing our understanding of animal locomotion, will improve robotic mobility. Recent studies of physical interaction with environment discovered that during beam obstacle traversal and ground self-righting, discoid cockroaches use and transition between diverse locomotor modes probabilistically and via multiple pathways. To traverse beams, the animal first pushes against them, but eventually pitches up due to beam restoring forces, following which it either pushes across beams (pitch mode) or rolls into the gap (roll mode). To self-right, the animal opens and pushes its wings against the ground, which pitches its body forward (metastable mode), and then rolls sideways (roll mode). Here, we seek to begin to explain these observations by integrating biological, robotic, and physics studies. We focus on pitch-to-roll and metastable-to-roll transitions of cockroaches during escape and emergency responses and feedforward-controlled robots. We discovered that across both systems, physical interaction is stochastic, with animals showing more variability. Animal and robot system states are strongly attracted to basins of their potential energy landscape, resulting in stereotyped locomotor modes. Locomotor transitions are probabilistic barrier-crossing transitions between landscape basins. Whereas the animal and robot traversed stiff beams via roll mode, they pushed across flimsy beams, suggesting that modes with easier physical interaction are more probable to occur (more favorable). Varying potential energy barriers by changing beam torsional stiffness (in the animal and robot) and kinetic energy fluctuation by changing body oscillation (in the robot) in both beam traversal and self-righting revealed that kinetic energy fluctuation comparable to the barrier facilitates probabilistic transition to the more favorable mode. Changing the system configuration (self-righting robot's wing opening) facilitates transitions by lowering the barrier. The animal's pitch-to-roll transition during beam traversal occurred even with insufficient kinetic energy fluctuation, suggesting that sensory feedback may be involved. These discoveries support the use of potential energy landscapes as a framework to understand locomotor transitions. Finally, we implemented methods for tracking and 3-D reconstruction of small animal locomotion in an existing terrain treadmill
    corecore