370 research outputs found

    Markerless visual servoing on unknown objects for humanoid robot platforms

    Full text link
    To precisely reach for an object with a humanoid robot, it is of central importance to have good knowledge of both end-effector, object pose and shape. In this work we propose a framework for markerless visual servoing on unknown objects, which is divided in four main parts: I) a least-squares minimization problem is formulated to find the volume of the object graspable by the robot's hand using its stereo vision; II) a recursive Bayesian filtering technique, based on Sequential Monte Carlo (SMC) filtering, estimates the 6D pose (position and orientation) of the robot's end-effector without the use of markers; III) a nonlinear constrained optimization problem is formulated to compute the desired graspable pose about the object; IV) an image-based visual servo control commands the robot's end-effector toward the desired pose. We demonstrate effectiveness and robustness of our approach with extensive experiments on the iCub humanoid robot platform, achieving real-time computation, smooth trajectories and sub-pixel precisions

    Generation of dynamic motion for anthropomorphic systems under prioritized equality and inequality constraints

    Get PDF
    In this paper, we propose a solution to compute full-dynamic motions for a humanoid robot, accounting for various kinds of constraints such as dynamic balance or joint limits. As a first step, we propose a unification of task-based control schemes, in inverse kinematics or inverse dynamics. Based on this unification, we generalize the cascade of quadratic programs that were developed for inverse kinematics only. Then, we apply the solution to generate, in simulation, wholebody motions for a humanoid robot in unilateral contact with the ground, while ensuring the dynamic balance on a non horizontal surface

    Motion Planning for Multi-Contact Visual Servoing on Humanoid Robots

    Get PDF
    International audienceThis paper describes the implementation of a canonical motion generation pipeline guided by vision for a TALOS humanoid robot. The proposed system is using a mul-ticontact planner, a Differential Dynamic Programming (DDP) algorithm, and a stabilizer. The multicontact planner provides a set of contacts and dynamically consistent trajectories for the Center-Of-Mass (CoM) and the Center-Of-Pressure (CoP). It provides a structure to initialize a DDP algorithm which, in turn, provides a dynamically consistent trajectory for all the joints as it integrates all the dynamics of the robot, together with rigid contact models and the visual task. Tested on Gazebo the resulting trajectory had to be stabilized with a state-of-the-art algorithm to be successful. In addition to testing motion generated from high specifications to the stabilized motion in simulation, we express visual features at Whole Body Generator level which is a DDP formulated solver. It handles non-linearities as the ones introduced by the projections of visual features expressed and minimized in the image plan of the camera

    Articulated Object Tracking from Visual Sensory Data for Robotic Manipulation

    Get PDF
    Roboti juhtimine liigestatud objekti manipuleerimisel vajab robustset ja täpsetobjekti oleku hindamist. Oleku hindamise tulemust kasutatakse tagasisidena vastavate roboti liigutuste arvutamisel soovitud manipulatsiooni tulemuse saavutamiseks. Selles töös uuritakse robootilise manipuleerimise visuaalse tagasiside teostamist. Tehisnägemisele põhinevat servode liigutamist juhitakse ruutplaneerimise raamistikus võimaldamaks humanoidsel robotil läbi viia objekti manipulatsiooni. Esitletakse tehisnägemisel põhinevat liigestatud objekti oleku hindamise meetodit. Me näitame väljapakutud meetodi efektiivsust mitmel erineval eksperimendil HRP-4 humanoidse robotiga. Teeme ka ettepaneku ühendada masinõppe ja serva tuvastamise tehnikad liigestatud objekti manipuleerimise markeerimata visuaalse tagasiside teostamiseks reaalajas.In order for a robot to manipulate an articulated object, it needs to know itsstate (i.e. its pose); that is to say: where and in which configuration it is. Theresult of the object’s state estimation is to be provided as a feedback to the control to compute appropriate robot motion and achieve the desired manipulation outcome. This is the main topic of this thesis, where articulated object state estimation is solved using visual feedback. Vision based servoing is implemented in a Quadratic Programming task space control framework to enable humanoid robot to perform articulated objects manipulation. We thoroughly developed our methodology for vision based articulated object state estimation on these bases.We demonstrate its efficiency by assessing it on several real experiments involving the HRP-4 humanoid robot. We also propose to combine machine learning and edge extraction techniques to achieve markerless, realtime and robust visual feedback for articulated object manipulation

    Visual servo control on a humanoid robot

    Get PDF
    Includes bibliographical referencesThis thesis deals with the control of a humanoid robot based on visual servoing. It seeks to confer a degree of autonomy to the robot in the achievement of tasks such as reaching a desired position, tracking or/and grasping an object. The autonomy of humanoid robots is considered as crucial for the success of the numerous services that this kind of robots can render with their ability to associate dexterity and mobility in structured, unstructured or even hazardous environments. To achieve this objective, a humanoid robot is fully modeled and the control of its locomotion, conditioned by postural balance and gait stability, is studied. The presented approach is formulated to account for all the joints of the biped robot. As a way to conform the reference commands from visual servoing to the discrete locomotion mode of the robot, this study exploits a reactive omnidirectional walking pattern generator and a visual task Jacobian redefined with respect to a floating base on the humanoid robot, instead of the stance foot. The redundancy problem stemming from the high number of degrees of freedom coupled with the omnidirectional mobility of the robot is handled within the task priority framework, allowing thus to achieve con- figuration dependent sub-objectives such as improving the reachability, the manipulability and avoiding joint limits. Beyond a kinematic formulation of visual servoing, this thesis explores a dynamic visual approach and proposes two new visual servoing laws. Lyapunov theory is used first to prove the stability and convergence of the visual closed loop, then to derive a robust adaptive controller for the combined robot-vision dynamics, yielding thus an ultimate uniform bounded solution. Finally, all proposed schemes are validated in simulation and experimentally on the humanoid robot NAO

    Visual Guided Approach-to-Grasp for Humanoid Robots

    Get PDF
    Vision based control for robots has been an active area of research for more than 30 years and significant progresses in the theory and application have been reported (Hutchinson et al., 1996; Kragic & Christensen, 2002; Chaumette & Hutchinson, 2006). Vision is a very important non-contact measurement method for robots. Especially in the field of humanoi

    Kinematically-Decoupled Impedance Control for Fast Object Visual Servoing and Grasping on Quadruped Manipulators

    Full text link
    We propose a control pipeline for SAG (Searching, Approaching, and Grasping) of objects, based on a decoupled arm kinematic chain and impedance control, which integrates image-based visual servoing (IBVS). The kinematic decoupling allows for fast end-effector motions and recovery that leads to robust visual servoing. The whole approach and pipeline can be generalized for any mobile platform (wheeled or tracked vehicles), but is most suitable for dynamically moving quadruped manipulators thanks to their reactivity against disturbances. The compliance of the impedance controller makes the robot safer for interactions with humans and the environment. We demonstrate the performance and robustness of the proposed approach with various experiments on our 140 kg HyQReal quadruped robot equipped with a 7-DoF manipulator arm. The experiments consider dynamic locomotion, tracking under external disturbances, and fast motions of the target object.Comment: Accepted as contributed paper at 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023

    Vision-based methods for state estimation and control of robotic systems with application to mobile and surgical robots

    Get PDF
    For autonomous systems that need to perceive the surrounding environment for the accomplishment of a given task, vision is a highly informative exteroceptive sensory source. When gathering information from the available sensors, in fact, the richness of visual data allows to provide a complete description of the environment, collecting geometrical and semantic information (e.g., object pose, distances, shapes, colors, lights). The huge amount of collected data allows to consider both methods exploiting the totality of the data (dense approaches), or a reduced set obtained from feature extraction procedures (sparse approaches). This manuscript presents dense and sparse vision-based methods for control and sensing of robotic systems. First, a safe navigation scheme for mobile robots, moving in unknown environments populated by obstacles, is presented. For this task, dense visual information is used to perceive the environment (i.e., detect ground plane and obstacles) and, in combination with other sensory sources, provide an estimation of the robot motion with a linear observer. On the other hand, sparse visual data are extrapolated in terms of geometric primitives, in order to implement a visual servoing control scheme satisfying proper navigation behaviours. This controller relies on visual estimated information and is designed in order to guarantee safety during navigation. In addition, redundant structures are taken into account to re-arrange the internal configuration of the robot and reduce its encumbrance when the workspace is highly cluttered. Vision-based estimation methods are relevant also in other contexts. In the field of surgical robotics, having reliable data about unmeasurable quantities is of great importance and critical at the same time. In this manuscript, we present a Kalman-based observer to estimate the 3D pose of a suturing needle held by a surgical manipulator for robot-assisted suturing. The method exploits images acquired by the endoscope of the robot platform to extrapolate relevant geometrical information and get projected measurements of the tool pose. This method has also been validated with a novel simulator designed for the da Vinci robotic platform, with the purpose to ease interfacing and employment in ideal conditions for testing and validation. The Kalman-based observers mentioned above are classical passive estimators, whose system inputs used to produce the proper estimation are theoretically arbitrary. This does not provide any possibility to actively adapt input trajectories in order to optimize specific requirements on the performance of the estimation. For this purpose, active estimation paradigm is introduced and some related strategies are presented. More specifically, a novel active sensing algorithm employing visual dense information is described for a typical Structure-from-Motion (SfM) problem. The algorithm generates an optimal estimation of a scene observed by a moving camera, while minimizing the maximum uncertainty of the estimation. This approach can be applied to any robotic platforms and has been validated with a manipulator arm equipped with a monocular camera
    corecore