12 research outputs found

    Inverse real-time Finite Element simulation for robotic control of flexible needle insertion in deformable tissues

    Get PDF
    International audienceThis paper introduces a new method for automatic robotic needle steering in deformable tissues. The main contribution relies on the use of an inverse Finite Element (FE) simulation to control an articulated robot interacting with deformable structures. In this work we consider a flexible needle, embedded in the end effector of a 6 arm Mitsubishi RV1A robot, and its insertion into a silicone phantom. Given a trajectory on the rest configuration of the silicone phantom, our method provides in real-time the displacements of the articulated robot which guarantee the permanence of the needle within the predefined path, taking into account any undergoing deformation on both the needle and the trajectory itself. A forward simulation combines i) a kinematic model of the robot, ii) FE models of the needle and phantom gel iii) an interaction model allowing the simulation of friction and puncture force. A Newton-type method is then used to provide the displacement of the robot to minimize the distance between the needle's tip and the desired trajectory. We validate our approach with a simulation in which a virtual robot can successfully perform the insertion while both the needle and the trajectory undergo significant deformations

    A minimally invasive surgical system for 3D ultrasound guided robotic retrieval of foreign bodies from a beating heart

    Get PDF
    The result of various medical conditions and trauma, foreign bodies in the heart pose a serious health risk as they may interfere with cardiovascular function. Particles such as thrombi, bullet fragments, and shrapnel can become trapped in a person's heart after migrating through the venous system, or by direct penetration. The severity of disruption can range from benign to fatal, with associated symptoms including anxiety, fever, cardiac tamponade, hemorrhage, infection, embolism, arrhythmia, and valve dysfunction. Injuries of this nature are common in both civilian and military populations. For symptomatic cases, conventional treatment is removal of the foreign body through open surgery via a median sternotomy, the use of cardiopulmonary bypass, and a wide incision in the heart muscle; these methods incur pronounced perioperative risks and long recovery periods. In order to improve upon the standard of care, we propose an image guided robotic system and a corresponding minimally invasive surgical approach. The system employs a dexterous robotic capture device that can maneuver inside the heart through a small incision. Visualization and guidance within the otherwise occluded internal regions are provided by 3D transesophageal echocardiography (TEE), an emerging form of intraoperative medical imaging used in interventions such as mitral valve repair and device implantation. A robotic approach, as opposed to a manual procedure using rigid instruments, is motivated by the various challenges inherent in minimally invasive surgery, which arise from attempts to perform skilled surgical tasks through small incisions without direct vision. Challenges include reduced dexterity, constrained workspace, limited visualization, and difficult hand-eye coordination, which ultimately lead to poor manipulability. A dexterous robotic end effector with real-time image guidance can help overcome these challenges and potentially improve surgical performance. However promising, such a system and approach require that several technical hurdles be resolved. The foreign body must be automatically tracked as it travels about the dynamic environment of the heart. The erratically moving particle must then be captured using a dexterous robot that moves much more slowly in comparison. Furthermore, retrieval must be performed under 3D ultrasound guidance, amidst the uncertainties presented by both the turbulent flow and by the imaging modality itself. In addressing such barriers, this thesis explores the development of a prototype system capable of retrieving a foreign body from a beating heart, culminating in a set of demonstrative in vitro experiments

    Commande référencée vision pour drones à décollages et atterrissages verticaux

    Get PDF
    La miniaturisation des calculateurs a permis le développement des drones, engins volants capable de se déplacer de façon autonome et de rendre des services, comme se rendre clans des lieux peu accessibles ou remplacer l'homme dans des missions pénibles. Un enjeu essentiel dans ce cadre est celui de l'information qu'ils doivent utiliser pour se déplacer, et donc des capteurs à exploiter pour obtenir cette information. Or nombre de ces capteurs présentent des inconvénients (risques de brouillage ou de masquage en particulier). L'utilisation d'une caméra vidéo dans ce contexte offre une perspective intéressante. L'objet de cette thèse était l'étude de l'utilisation d'une telle caméra dans un contexte capteur minimaliste: essentiellement l'utilisation des données visuelles et inertielles. Elle a porté sur le développement de lois de commande offrant au système ainsi bouclé des propriétés de stabilité et de robustesse. En particulier, une des difficultés majeures abordées vient de la connaissance très limitée de l'environnement dans lequel le drone évolue. La thèse a tout d'abord étudié le problème de stabilisation du drone sous l'hypothèse de petits déplacements (hypothèse de linéarité). Dans un second temps, on a montré comment relâcher l'hypothèse de petits déplacements via la synthèse de commandes non linéaires. Le cas du suivi de trajectoire a ensuite été considéré, en s'appuyant sur la définition d'un cadre générique de mesure d'erreur de position par rapport à un point de référence inconnu. Enfin, la validation expérimentale de ces résultats a été entamée pendant la thèse, et a permis de valider bon nombre d'étapes et de défis associés à leur mise en œuvre en conditions réelles. La thèse se conclut par des perspectives pour poursuivre les travaux.The computers miniaturization has paved the way for the conception of Unmanned Aerial vehicles - "UAVs"- that is: flying vehicles embedding computers to make them partially or fully automated for such missions as e.g. cluttered environments exploration or replacement of humanly piloted vehicles for hazardous or painful missions. A key challenge for the design of such vehicles is that of the information they need to find in order to move, and, thus, the sensors to be used in order to get such information. A number of such sensors have flaws (e.g. the risk of being jammed). In this context, the use of a videocamera offers interesting prospectives. The goal of this PhD work was to study the use of such a videocamera in a minimal sensors setting: essentially the use of visual and inertial data. The work has been focused on the development of control laws offering the closed loop system stability and robustness properties. In particular, one of the major difficulties we faced came from the limited knowledge of the UAV environment. First we have studied this question under a small displacements assumption (linearity assumption). A control law has been defined, which took performance criteria into account. Second, we have showed how the small displacements assumption could be given up through nonlinear control design. The case of a trajectory following has then been considered, with the use of a generic error vector modelling with respect to an unknown reference point. Finally, an experimental validation of this work has been started and helped validate a number of steps and challenges associated to real conditions experiments. The work was concluded with prospectives for future work.TOULOUSE-ISAE (315552318) / SudocSudocFranceF

    Navigation with Local Sensors in Surgical Robotics

    Get PDF

    Design of a robotic transcranial magnetic stimulation system

    Get PDF
    Transcranial Magnetic Stimulation (TMS) is an excellent and non-invasive technique for studying the human brain. Accurate placement of the magnetic coil is required by this technique in order to induce a specific cortical activity. Currently, the coil is manually held in most of stimulation procedures, which does not achieve the precise clinical evaluation of the procedure. This thesis proposes a robotic TMS system to resolve these problems as a robot has excellent locating and holding capabilities. The proposed system can track in real-time the subject’s head position and simultaneously maintain a constant contact force between the coil and the subject’s head so that it does not need to be restrained and thus ensure the accuracy of the stimulation result. Requirements for the robotic TMS system are proposed initially base on analysis of a serial of TMS experiments on real subjects. Both hardware and software design are addressed according to these requirements in this thesis. An optical tracking system is used in the system for guiding and tracking the motion of the robot and inadvertent small movements of the subject’s head. Two methods of coordinate system registration are developed base on DH and Tsai-lenz’s method, and it is found that DH method has an improved accuracy (RMS error is 0.55mm). In addition, the contact force is controlled using a Force/Torque sensor; and a combined position and force tracking controller is applied in the system. This combined controller incorporates the position tracking and conventional gain scheduling force control algorithms to monitor both position and force in real-time. These algorithms are verified through a series of experiments. And it is found that the maximum position and force error are 3mm and 5N respectively when the subject moves at a speed of 20mm/s. Although the performance still needs to be improved to achieve a better system, the robotic system has shown the significant advantage compared with the manual TMS system. Keywords—Transcranial Magnetic Stimulation, Robot arm, Medical system, Calibration, TrackingEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design of a robotic transcranial magnetic stimulation system

    Get PDF
    Transcranial Magnetic Stimulation (TMS) is an excellent and non-invasive technique for studying the human brain. Accurate placement of the magnetic coil is required by this technique in order to induce a specific cortical activity. Currently, the coil is manually held in most of stimulation procedures, which does not achieve the precise clinical evaluation of the procedure. This thesis proposes a robotic TMS system to resolve these problems as a robot has excellent locating and holding capabilities. The proposed system can track in real-time the subject’s head position and simultaneously maintain a constant contact force between the coil and the subject’s head so that it does not need to be restrained and thus ensure the accuracy of the stimulation result. Requirements for the robotic TMS system are proposed initially base on analysis of a serial of TMS experiments on real subjects. Both hardware and software design are addressed according to these requirements in this thesis. An optical tracking system is used in the system for guiding and tracking the motion of the robot and inadvertent small movements of the subject’s head. Two methods of coordinate system registration are developed base on DH and Tsai-lenz’s method, and it is found that DH method has an improved accuracy (RMS error is 0.55mm). In addition, the contact force is controlled using a Force/Torque sensor; and a combined position and force tracking controller is applied in the system. This combined controller incorporates the position tracking and conventional gain scheduling force control algorithms to monitor both position and force in real-time. These algorithms are verified through a series of experiments. And it is found that the maximum position and force error are 3mm and 5N respectively when the subject moves at a speed of 20mm/s. Although the performance still needs to be improved to achieve a better system, the robotic system has shown the significant advantage compared with the manual TMS system. Keywords—Transcranial Magnetic Stimulation, Robot arm, Medical system, Calibration, TrackingEThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Accurate 3D-reconstruction and -navigation for high-precision minimal-invasive interventions

    Get PDF
    The current lateral skull base surgery is largely invasive since it requires wide exposure and direct visualization of anatomical landmarks to avoid damaging critical structures. A multi-port approach aiming to reduce such invasiveness has been recently investigated. Thereby three canals are drilled from the skull surface to the surgical region of interest: the first canal for the instrument, the second for the endoscope, and the third for material removal or an additional instrument. The transition to minimal invasive approaches in the lateral skull base surgery requires sub-millimeter accuracy and high outcome predictability, which results in high requirements for the image acquisition as well as for the navigation. Computed tomography (CT) is a non-invasive imaging technique allowing the visualization of the internal patient organs. Planning optimal drill channels based on patient-specific models requires high-accurate three-dimensional (3D) CT images. This thesis focuses on the reconstruction of high quality CT volumes. Therefore, two conventional imaging systems are investigated: spiral CT scanners and C-arm cone-beam CT (CBCT) systems. Spiral CT scanners acquire volumes with typically anisotropic resolution, i.e. the voxel spacing in the slice-selection-direction is larger than the in-the-plane spacing. A new super-resolution reconstruction approach is proposed to recover images with high isotropic resolution from two orthogonal low-resolution CT volumes. C-arm CBCT systems offers CT-like 3D imaging capabilities while being appropriate for interventional suites. A main drawback of these systems is the commonly encountered CT artifacts due to several limitations in the imaging system, such as the mechanical inaccuracies. This thesis contributes new methods to enhance the CBCT reconstruction quality by addressing two main reconstruction artifacts: the misalignment artifacts caused by mechanical inaccuracies, and the metal-artifacts caused by the presence of metal objects in the scanned region. CBCT scanners are appropriate for intra-operative image-guided navigation. For instance, they can be used to control the drill process based on intra-operatively acquired 2D fluoroscopic images. For a successful navigation, accurate estimate of C-arm pose relative to the patient anatomy and the associated surgical plan is required. A new algorithm has been developed to fulfill this task with high-precision. The performance of the introduced methods is demonstrated on simulated and real data

    Visual servoing for automatic and uncalibrated needle placement for percutaneous procedures

    No full text
    corecore