10,329 research outputs found

    Visual Sensor with Resolution Enhancement by Mechanical Vibrations

    Get PDF
    The resolution limit of visual sensors due to finite pixel spacing can be overcome by applying continuous low-amplitude vibrations to the image—or taking advantage of existing vibrations in the environment. Thereby, spatial intensity gradients turn into temporal intensity fluctuations which can be detected and processed by every pixel independently from the others. This approach enhances resolution and virtually eliminates fixed-pattern noise. A visual sensing microsystem taking advantage of this principle is described. It incorporates a custom analog integrated circuit implementing an array of 32 by 32 pixels with local temporal signal processing. Another key component is a resonant mechanical device producing low-amplitude image scanning movements powered by environmental vibrations

    Image enhancement from a stabilised video sequence

    Get PDF
    The aim of video stabilisation is to create a new video sequence where the motions (i.e. rotations, translations) and scale differences between frames (or parts of a frame) have effectively been removed. These stabilisation effects can be obtained via digital video processing techniques which use the information extracted from the video sequence itself, with no need for additional hardware or knowledge about camera physical motion. A video sequence usually contains a large overlap between successive frames, and regions of the same scene are sampled at different positions. In this paper, this multiple sampling is combined to achieve images with a higher spatial resolution. Higher resolution imagery play an important role in assisting in the identification of people, vehicles, structures or objects of interest captured by surveillance cameras or by video cameras used in face recognition, traffic monitoring, traffic law reinforcement, driver assistance and automatic vehicle guidance systems

    The role of fingerprints in the coding of tactile information probed with a biomimetic sensor

    Get PDF
    In humans, the tactile perception of fine textures (spatial scale <200 micrometers) is mediated by skin vibrations generated as the finger scans the surface. To establish the relationship between texture characteristics and subcutaneous vibrations, a biomimetic tactile sensor has been designed whose dimensions match those of the fingertip. When the sensor surface is patterned with parallel ridges mimicking the fingerprints, the spectrum of vibrations elicited by randomly textured substrates is dominated by one frequency set by the ratio of the scanning speed to the interridge distance. For human touch, this frequency falls within the optimal range of sensitivity of Pacinian afferents, which mediate the coding of fine textures. Thus, fingerprints may perform spectral selection and amplification of tactile information that facilitate its processing by specific mechanoreceptors.Comment: 25 pages, 11 figures, article + supporting materia

    A Review of Smart Materials in Tactile Actuators for Information Delivery

    Full text link
    As the largest organ in the human body, the skin provides the important sensory channel for humans to receive external stimulations based on touch. By the information perceived through touch, people can feel and guess the properties of objects, like weight, temperature, textures, and motion, etc. In fact, those properties are nerve stimuli to our brain received by different kinds of receptors in the skin. Mechanical, electrical, and thermal stimuli can stimulate these receptors and cause different information to be conveyed through the nerves. Technologies for actuators to provide mechanical, electrical or thermal stimuli have been developed. These include static or vibrational actuation, electrostatic stimulation, focused ultrasound, and more. Smart materials, such as piezoelectric materials, carbon nanotubes, and shape memory alloys, play important roles in providing actuation for tactile sensation. This paper aims to review the background biological knowledge of human tactile sensing, to give an understanding of how we sense and interact with the world through the sense of touch, as well as the conventional and state-of-the-art technologies of tactile actuators for tactile feedback delivery

    Sensor-based optimized control of the full load instability in large hydraulic turbines

    Get PDF
    Hydropower plants are of paramount importance for the integration of intermittent renewable energy sources in the power grid. In order to match the energy generated and consumed, Large hydraulic turbines have to work under off-design conditions, which may lead to dangerous unstable operating points involving the hydraulic, mechanical and electrical system. Under these conditions, the stability of the grid and the safety of the power plant itself can be compromised. For many Francis Turbines one of these critical points, that usually limits the maximum output power, is the full load instability. Therefore, these machines usually work far away from this unstable point, reducing the effective operating range of the unit. In order to extend the operating range of the machine, working closer to this point with a reasonable safety margin, it is of paramount importance to monitor and to control relevant parameters of the unit, which have to be obtained with an accurate sensor acquisition strategy. Within the framework of a large EU project, field tests in a large Francis Turbine located in Canada (rated power of 444 MW) have been performed. Many different sensors were used to monitor several working parameters of the unit for all its operating range. Particularly for these tests, more than 80 signals, including ten type of different sensors and several operating signals that define the operating point of the unit, were simultaneously acquired. The present study, focuses on the optimization of the acquisition strategy, which includes type, number, location, acquisition frequency of the sensors and corresponding signal analysis to detect the full load instability and to prevent the unit from reaching this point. A systematic approach to determine this strategy has been followed. It has been found that some indicators obtained with different types of sensors are linearly correlated with the oscillating power. The optimized strategy has been determined based on the correlation characteristics (linearity, sensitivity and reactivity), the simplicity of the installation and the acquisition frequency necessary. Finally, an economic and easy implementable protection system based on the resulting optimized acquisition strategy is proposed. This system, which can be used in a generic Francis turbine with a similar full load instability, permits one to extend the operating range of the unit by working close to the instability with a reasonable safety margin.Postprint (published version

    Analog VLSI circuits for inertial sensory systems

    Get PDF
    Supervised by Rahul Sarpeshkar.Also isssued as Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (leaves 67-68).by Maziar Tavakoli Dastjerdi

    Piezoelectric Sensors for Real-time Monitoring and Quality Control in Additive Manufacturing

    Full text link
    Within the ever-evolving landscape of engineering, particularly in the dynamic domain of additive In manufacturing, a pursuit of precision and excellence in production processes takes centre stage. This research , This paper serves to give a comprehensive understanding of piezoelectric sensors, a topic that is both academically engaging and of practical significance, catering to both seasoned experts and those newly venturing into the field. Additive manufacturing, lauded for its groundbreaking potential, underscores the imperative of rigorous quality control. This introduces piezoelectric sensors, devices that may be unfamiliar to many but possess considerable potential. This paper embarks on a methodical journey, commencing with an introductory elucidation of the piezoelectric effect. It then advances to the vital role of piezoelectric sensors in real-time monitoring and quality control, unveiling their potential and relevance for newcomers and seasoned professionals alike. This research, structured systematically from fundamental principles to pragmatic applications, presents findings that are not only academically informative but also represent a substantial stride towards achieving precision and high-quality manufacturing processes in the engineering field.Comment: 14 Pages, encompassing electrical element (piezoelectric sensor) and its use in advanced manufacturing technolog
    • …
    corecore