1,323 research outputs found

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    Patient-specific simulation environment for surgical planning and preoperative rehearsal

    Get PDF
    Surgical simulation is common practice in the fields of surgical education and training. Numerous surgical simulators are available from commercial and academic organisations for the generic modelling of surgical tasks. However, a simulation platform is still yet to be found that fulfils the key requirements expected for patient-specific surgical simulation of soft tissue, with an effective translation into clinical practice. Patient-specific modelling is possible, but to date has been time-consuming, and consequently costly, because data preparation can be technically demanding. This motivated the research developed herein, which addresses the main challenges of biomechanical modelling for patient-specific surgical simulation. A novel implementation of soft tissue deformation and estimation of the patient-specific intraoperative environment is achieved using a position-based dynamics approach. This modelling approach overcomes the limitations derived from traditional physically-based approaches, by providing a simulation for patient-specific models with visual and physical accuracy, stability and real-time interaction. As a geometrically- based method, a calibration of the simulation parameters is performed and the simulation framework is successfully validated through experimental studies. The capabilities of the simulation platform are demonstrated by the integration of different surgical planning applications that are found relevant in the context of kidney cancer surgery. The simulation of pneumoperitoneum facilitates trocar placement planning and intraoperative surgical navigation. The implementation of deformable ultrasound simulation can assist surgeons in improving their scanning technique and definition of an optimal procedural strategy. Furthermore, the simulation framework has the potential to support the development and assessment of hypotheses that cannot be tested in vivo. Specifically, the evaluation of feedback modalities, as a response to user-model interaction, demonstrates improved performance and justifies the need to integrate a feedback framework in the robot-assisted surgical setting.Open Acces

    Perception and Orientation in Minimally Invasive Surgery

    No full text
    During the last two decades, we have seen a revolution in the way that we perform abdominal surgery with increased reliance on minimally invasive techniques. This paradigm shift has come at a rapid pace, with laparoscopic surgery now representing the gold standard for many surgical procedures and further minimisation of invasiveness being seen with the recent clinical introduction of novel techniques such as single-incision laparoscopic surgery and natural orifice translumenal endoscopic surgery. Despite the obvious benefits conferred on the patient in terms of morbidity, length of hospital stay and post-operative pain, this paradigm shift comes at a significantly higher demand on the surgeon, in terms of both perception and manual dexterity. The issues involved include degradation of sensory input to the operator compared to conventional open surgery owing to a loss of three-dimensional vision through the use of the two-dimensional operative interface, and decreased haptic feedback from the instruments. These changes have led to a much higher cognitive load on the surgeon and a greater risk of operator disorientation leading to potential surgical errors. This thesis represents a detailed investigation of disorientation in minimally invasive surgery. In this thesis, eye tracking methodology is identified as the method of choice for evaluating behavioural patterns during orientation. An analysis framework is proposed to profile orientation behaviour using eye tracking data validated in a laboratory model. This framework is used to characterise and quantify successful orientation strategies at critical stages of laparoscopic cholecystectomy and furthermore use these strategies to prove that focused teaching of this behaviour in novices can significantly increase performance in this task. Orientation strategies are then characterised for common clinical scenarios in natural orifice translumenal endoscopic surgery and the concept of image saliency is introduced to further investigate the importance of specific visual cues associated with effective orientation. Profiling of behavioural patterns is related to performance in orientation and implications on education and construction of smart surgical robots are drawn. Finally, a method for potentially decreasing operator disorientation is investigated in the form of endoscopic horizon stabilization in a simulated operative model for transgastric surgery. The major original contributions of this thesis include: Validation of a profiling methodology/framework to characterise orientation behaviour Identification of high performance orientation strategies in specific clinical scenarios including laparoscopic cholecystectomy and natural orifice translumenal endoscopic surgery Evaluation of the efficacy of teaching orientation strategies Evaluation of automatic endoscopic horizon stabilization in natural orifice translumenal endoscopic surgery The impact of the results presented in this thesis, as well as the potential for further high impact research is discussed in the context of both eye tracking as an evaluation tool in minimally invasive surgery as well as implementation of means to combat operator disorientation in a surgical platform. The work also provides further insight into the practical implementation of computer-assistance and technological innovation in future flexible access surgical platforms

    Hand eye coordination in surgery

    Get PDF
    The coordination of the hand in response to visual target selection has always been regarded as an essential quality in a range of professional activities. This quality has thus far been elusive to objective scientific measurements, and is usually engulfed in the overall performance of the individuals. Parallels can be drawn to surgery, especially Minimally Invasive Surgery (MIS), where the physical constraints imposed by the arrangements of the instruments and visualisation methods require certain coordination skills that are unprecedented. With the current paradigm shift towards early specialisation in surgical training and shortened focused training time, selection process should identify trainees with the highest potentials in certain specific skills. Although significant effort has been made in objective assessment of surgical skills, it is only currently possible to measure surgeons’ abilities at the time of assessment. It has been particularly difficult to quantify specific details of hand-eye coordination and assess innate ability of future skills development. The purpose of this thesis is to examine hand-eye coordination in laboratory-based simulations, with a particular emphasis on details that are important to MIS. In order to understand the challenges of visuomotor coordination, movement trajectory errors have been used to provide an insight into the innate coordinate mapping of the brain. In MIS, novel spatial transformations, due to a combination of distorted endoscopic image projections and the “fulcrum” effect of the instruments, accentuate movement generation errors. Obvious differences in the quality of movement trajectories have been observed between novices and experts in MIS, however, this is difficult to measure quantitatively. A Hidden Markov Model (HMM) is used in this thesis to reveal the underlying characteristic movement details of a particular MIS manoeuvre and how such features are exaggerated by the introduction of rotation in the endoscopic camera. The proposed method has demonstrated the feasibility of measuring movement trajectory quality by machine learning techniques without prior arbitrary classification of expertise. Experimental results have highlighted these changes in novice laparoscopic surgeons, even after a short period of training. The intricate relationship between the hands and the eyes changes when learning a skilled visuomotor task has been previously studied. Reactive eye movement, when visual input is used primarily as a feedback mechanism for error correction, implies difficulties in hand-eye coordination. As the brain learns to adapt to this new coordinate map, eye movements then become predictive of the action generated. The concept of measuring this spatiotemporal relationship is introduced as a measure of hand-eye coordination in MIS, by comparing the Target Distance Function (TDF) between the eye fixation and the instrument tip position on the laparoscopic screen. Further validation of this concept using high fidelity experimental tasks is presented, where higher cognitive influence and multiple target selection increase the complexity of the data analysis. To this end, Granger-causality is presented as a measure of the predictability of the instrument movement with the eye fixation pattern. Partial Directed Coherence (PDC), a frequency-domain variation of Granger-causality, is used for the first time to measure hand-eye coordination. Experimental results are used to establish the strengths and potential pitfalls of the technique. To further enhance the accuracy of this measurement, a modified Jensen-Shannon Divergence (JSD) measure has been developed for enhancing the signal matching algorithm and trajectory segmentations. The proposed framework incorporates high frequency noise filtering, which represents non-purposeful hand and eye movements. The accuracy of the technique has been demonstrated by quantitative measurement of multiple laparoscopic tasks by expert and novice surgeons. Experimental results supporting visual search behavioural theory are presented, as this underpins the target selection process immediately prior to visual motor action generation. The effects of specialisation and experience on visual search patterns are also examined. Finally, pilot results from functional brain imaging are presented, where the Posterior Parietal Cortical (PPC) activation is measured using optical spectroscopy techniques. PPC has been demonstrated to involve in the calculation of the coordinate transformations between the visual and motor systems, which establishes the possibilities of exciting future studies in hand-eye coordination

    Optimised Calibration, Registration and Tracking for Image Enhanced Surgical Navigation in ENT Operations

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Computer Assisted Learning in Obstetric Ultrasound

    Get PDF
    Ultrasound is a dynamic, real-time imaging modality that is widely used in clinical obstetrics. Simulation has been proposed as a training method, but how learners performance translates from the simulator to the clinic is poorly understood. Widely accepted, validated and objective measures of ultrasound competency have not been established for clinical practice. These are important because previous works have noted that some individuals do not achieve expert-like performance despite daily usage of obstetric ultrasound. Underlying foundation training in ultrasound was thought to be sub-optimal in these cases. Given the widespread use of ultrasound and the importance of accurately estimating the fetal weight for the management of high-risk pregnancies and the potential morbidity associated with iatrogenic prematurity or unrecognised growth restriction, reproducible skill minimising variability is of great importance. In this thesis, I will investigate two methods with the aim of improving training in obstetric ultrasound. The initial work will focus on quantifying operational performance. I collect data in the simulated and clinical environment to compare operator performance between novice and expert performance. In the later work I developed a mixed reality trainer to enhance trainee’s visualisation of how the ultrasound beam interacts with the anatomy being scanned. Mixed reality devices offer potential for trainees because they combine real-world items with items in the virtual world. In the training environment this allows for instructions, 3-dimensional visualisations or workflow instructions to be overlaid on physical models. The work is important because the techniques developed for the qualification of operator skill could be combined in future work with a training programme designed around educational theory to give trainee sonographers consistent feedback and instruction throughout their training

    Augmented reality for computer assisted orthopaedic surgery

    Get PDF
    In recent years, computer-assistance and robotics have established their presence in operating theatres and found success in orthopaedic procedures. Benefits of computer assisted orthopaedic surgery (CAOS) have been thoroughly explored in research, finding improvements in clinical outcomes, through increased control and precision over surgical actions. However, human-computer interaction in CAOS remains an evolving field, through emerging display technologies including augmented reality (AR) – a fused view of the real environment with virtual, computer-generated holograms. Interactions between clinicians and patient-specific data generated during CAOS are limited to basic 2D interactions on touchscreen monitors, potentially creating clutter and cognitive challenges in surgery. Work described in this thesis sought to explore the benefits of AR in CAOS through: an integration between commercially available AR and CAOS systems, creating a novel AR-centric surgical workflow to support various tasks of computer-assisted knee arthroplasty, and three pre–clinical studies exploring the impact of the new AR workflow on both existing and newly proposed quantitative and qualitative performance metrics. Early research focused on cloning the (2D) user-interface of an existing CAOS system onto a virtual AR screen and investigating any resulting impacts on usability and performance. An infrared-based registration system is also presented, describing a protocol for calibrating commercial AR headsets with optical trackers, calculating a spatial transformation between surgical and holographic coordinate frames. The main contribution of this thesis is a novel AR workflow designed to support computer-assisted patellofemoral arthroplasty. The reported workflow provided 3D in-situ holographic guidance for CAOS tasks including patient registration, pre-operative planning, and assisted-cutting. Pre-clinical experimental validation on a commercial system (NAVIO®, Smith & Nephew) for these contributions demonstrates encouraging early-stage results showing successful deployment of AR to CAOS systems, and promising indications that AR can enhance the clinician’s interactions in the future. The thesis concludes with a summary of achievements, corresponding limitations and future research opportunities.Open Acces
    • …
    corecore