4,832 research outputs found

    Joint Video and Text Parsing for Understanding Events and Answering Queries

    Full text link
    We propose a framework for parsing video and text jointly for understanding events and answering user queries. Our framework produces a parse graph that represents the compositional structures of spatial information (objects and scenes), temporal information (actions and events) and causal information (causalities between events and fluents) in the video and text. The knowledge representation of our framework is based on a spatial-temporal-causal And-Or graph (S/T/C-AOG), which jointly models possible hierarchical compositions of objects, scenes and events as well as their interactions and mutual contexts, and specifies the prior probabilistic distribution of the parse graphs. We present a probabilistic generative model for joint parsing that captures the relations between the input video/text, their corresponding parse graphs and the joint parse graph. Based on the probabilistic model, we propose a joint parsing system consisting of three modules: video parsing, text parsing and joint inference. Video parsing and text parsing produce two parse graphs from the input video and text respectively. The joint inference module produces a joint parse graph by performing matching, deduction and revision on the video and text parse graphs. The proposed framework has the following objectives: Firstly, we aim at deep semantic parsing of video and text that goes beyond the traditional bag-of-words approaches; Secondly, we perform parsing and reasoning across the spatial, temporal and causal dimensions based on the joint S/T/C-AOG representation; Thirdly, we show that deep joint parsing facilitates subsequent applications such as generating narrative text descriptions and answering queries in the forms of who, what, when, where and why. We empirically evaluated our system based on comparison against ground-truth as well as accuracy of query answering and obtained satisfactory results

    FVQA: Fact-based Visual Question Answering

    Full text link
    Visual Question Answering (VQA) has attracted a lot of attention in both Computer Vision and Natural Language Processing communities, not least because it offers insight into the relationships between two important sources of information. Current datasets, and the models built upon them, have focused on questions which are answerable by direct analysis of the question and image alone. The set of such questions that require no external information to answer is interesting, but very limited. It excludes questions which require common sense, or basic factual knowledge to answer, for example. Here we introduce FVQA, a VQA dataset which requires, and supports, much deeper reasoning. FVQA only contains questions which require external information to answer. We thus extend a conventional visual question answering dataset, which contains image-question-answerg triplets, through additional image-question-answer-supporting fact tuples. The supporting fact is represented as a structural triplet, such as . We evaluate several baseline models on the FVQA dataset, and describe a novel model which is capable of reasoning about an image on the basis of supporting facts.Comment: 16 page

    Weak Supervision helps Emergence of Word-Object Alignment and improves Vision-Language Tasks

    Get PDF
    The large adoption of the self-attention (i.e. transformer model) and BERT-like training principles has recently resulted in a number of high performing models on a large panoply of vision-and-language problems (such as Visual Question Answering (VQA), image retrieval, etc.). In this paper we claim that these State-Of-The-Art (SOTA) approaches perform reasonably well in structuring information inside a single modality but, despite their impressive performances , they tend to struggle to identify fine-grained inter-modality relationships. Indeed, such relations are frequently assumed to be implicitly learned during training from application-specific losses, mostly cross-entropy for classification. While most recent works provide inductive bias for inter-modality relationships via cross attention modules, in this work, we demonstrate (1) that the latter assumption does not hold, i.e. modality alignment does not necessarily emerge automatically, and (2) that adding weak supervision for alignment between visual objects and words improves the quality of the learned models on tasks requiring reasoning. In particular , we integrate an object-word alignment loss into SOTA vision-language reasoning models and evaluate it on two tasks VQA and Language-driven Comparison of Images. We show that the proposed fine-grained inter-modality supervision significantly improves performance on both tasks. In particular, this new learning signal allows obtaining SOTA-level performances on GQA dataset (VQA task) with pre-trained models without finetuning on the task, and a new SOTA on NLVR2 dataset (Language-driven Comparison of Images). Finally, we also illustrate the impact of the contribution on the models reasoning by visualizing attention distributions

    KQA Pro: A Large-Scale Dataset with Interpretable Programs and Accurate SPARQLs for Complex Question Answering over Knowledge Base

    Full text link
    Complex question answering over knowledge base (Complex KBQA) is challenging because it requires various compositional reasoning capabilities, such as multi-hop inference, attribute comparison, set operation, and etc. Existing benchmarks have some shortcomings that limit the development of Complex KBQA: 1) they only provide QA pairs without explicit reasoning processes; 2) questions are either generated by templates, leading to poor diversity, or on a small scale. To this end, we introduce KQA Pro, a large-scale dataset for Complex KBQA. We define a compositional and highly-interpretable formal format, named Program, to represent the reasoning process of complex questions. We propose compositional strategies to generate questions, corresponding SPARQLs, and Programs with a small number of templates, and then paraphrase the generated questions to natural language questions (NLQ) by crowdsourcing, giving rise to around 120K diverse instances. SPARQL and Program depict two complementary solutions to answer complex questions, which can benefit a large spectrum of QA methods. Besides the QA task, KQA Pro can also serves for the semantic parsing task. As far as we know, it is currently the largest corpus of NLQ-to-SPARQL and NLQ-to-Program. We conduct extensive experiments to evaluate whether machines can learn to answer our complex questions in different cases, that is, with only QA supervision or with intermediate SPARQL/Program supervision. We find that state-of-the-art KBQA methods learnt from only QA pairs perform very poor on our dataset, implying our questions are more challenging than previous datasets. However, pretrained models learnt from our NLQ-to-SPARQL and NLQ-to-Program annotations surprisingly achieve about 90\% answering accuracy, which is even close to the human expert performance..

    Referring Expression Comprehension: A Survey of Methods and Datasets

    Full text link
    Referring expression comprehension (REC) aims to localize a target object in an image described by a referring expression phrased in natural language. Different from the object detection task that queried object labels have been pre-defined, the REC problem only can observe the queries during the test. It thus more challenging than a conventional computer vision problem. This task has attracted a lot of attention from both computer vision and natural language processing community, and several lines of work have been proposed, from CNN-RNN model, modular network to complex graph-based model. In this survey, we first examine the state of the art by comparing modern approaches to the problem. We classify methods by their mechanism to encode the visual and textual modalities. In particular, we examine the common approach of joint embedding images and expressions to a common feature space. We also discuss modular architectures and graph-based models that interface with structured graph representation. In the second part of this survey, we review the datasets available for training and evaluating REC systems. We then group results according to the datasets, backbone models, settings so that they can be fairly compared. Finally, we discuss promising future directions for the field, in particular the compositional referring expression comprehension that requires longer reasoning chain to address.Comment: Accepted to IEEE TM
    • …
    corecore