1,737 research outputs found

    Experimental Comparison of Visual-Aided Odometry Methods for Rail Vehicles

    Full text link
    Today, rail vehicle localization is based on infrastructure-side Balises (beacons) together with on-board odometry to determine whether a rail segment is occupied. Such a coarse locking leads to a sub-optimal usage of the rail networks. New railway standards propose the use of moving blocks centered around the rail vehicles to increase the capacity of the network. However, this approach requires accurate and robust position and velocity estimation of all vehicles. In this work, we investigate the applicability, challenges and limitations of current visual and visual-inertial motion estimation frameworks for rail applications. An evaluation against RTK-GPS ground truth is performed on multiple datasets recorded in industrial, sub-urban, and forest environments. Our results show that stereo visual-inertial odometry has a great potential to provide a precise motion estimation because of its complementing sensor modalities and shows superior performance in challenging situations compared to other frameworks

    Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight

    Full text link
    In recent years, vision-aided inertial odometry for state estimation has matured significantly. However, we still encounter challenges in terms of improving the computational efficiency and robustness of the underlying algorithms for applications in autonomous flight with micro aerial vehicles in which it is difficult to use high quality sensors and pow- erful processors because of constraints on size and weight. In this paper, we present a filter-based stereo visual inertial odometry that uses the Multi-State Constraint Kalman Filter (MSCKF) [1]. Previous work on stereo visual inertial odometry has resulted in solutions that are computationally expensive. We demonstrate that our Stereo Multi-State Constraint Kalman Filter (S-MSCKF) is comparable to state-of-art monocular solutions in terms of computational cost, while providing signifi- cantly greater robustness. We evaluate our S-MSCKF algorithm and compare it with state-of-art methods including OKVIS, ROVIO, and VINS-MONO on both the EuRoC dataset, and our own experimental datasets demonstrating fast autonomous flight with maximum speed of 17.5m/s in indoor and outdoor environments. Our implementation of the S-MSCKF is available at https://github.com/KumarRobotics/msckf_vio.Comment: Submitted to RAL and ICRA 201

    The Multi Vehicle Stereo Event Camera Dataset: An Event Camera Dataset for 3D Perception

    Full text link
    Event based cameras are a new passive sensing modality with a number of benefits over traditional cameras, including extremely low latency, asynchronous data acquisition, high dynamic range and very low power consumption. There has been a lot of recent interest and development in applying algorithms to use the events to perform a variety of 3D perception tasks, such as feature tracking, visual odometry, and stereo depth estimation. However, there currently lacks the wealth of labeled data that exists for traditional cameras to be used for both testing and development. In this paper, we present a large dataset with a synchronized stereo pair event based camera system, carried on a handheld rig, flown by a hexacopter, driven on top of a car and mounted on a motorcycle, in a variety of different illumination levels and environments. From each camera, we provide the event stream, grayscale images and IMU readings. In addition, we utilize a combination of IMU, a rigidly mounted lidar system, indoor and outdoor motion capture and GPS to provide accurate pose and depth images for each camera at up to 100Hz. For comparison, we also provide synchronized grayscale images and IMU readings from a frame based stereo camera system.Comment: 8 pages, 7 figures, 2 tables. Website: https://daniilidis-group.github.io/mvsec/. Video: https://www.youtube.com/watch?v=AwRMO5vFgak. Updated website and video in comments, DO

    VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator

    Full text link
    A monocular visual-inertial system (VINS), consisting of a camera and a low-cost inertial measurement unit (IMU), forms the minimum sensor suite for metric six degrees-of-freedom (DOF) state estimation. However, the lack of direct distance measurement poses significant challenges in terms of IMU processing, estimator initialization, extrinsic calibration, and nonlinear optimization. In this work, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator.Our approach starts with a robust procedure for estimator initialization and failure recovery. A tightly-coupled, nonlinear optimization-based method is used to obtain high accuracy visual-inertial odometry by fusing pre-integrated IMU measurements and feature observations. A loop detection module, in combination with our tightly-coupled formulation, enables relocalization with minimum computation overhead.We additionally perform four degrees-of-freedom pose graph optimization to enforce global consistency. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform onboard closed-loop autonomous flight on the MAV platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy localization. We open source our implementations for both PCs and iOS mobile devices.Comment: journal pape

    The Open Vision Computer: An Integrated Sensing and Compute System for Mobile Robots

    Full text link
    In this paper we describe the Open Vision Computer (OVC) which was designed to support high speed, vision guided autonomous drone flight. In particular our aim was to develop a system that would be suitable for relatively small-scale flying platforms where size, weight, power consumption and computational performance were all important considerations. This manuscript describes the primary features of our OVC system and explains how they are used to support fully autonomous indoor and outdoor exploration and navigation operations on our Falcon 250 quadrotor platform.Comment: 7 pages, 13 figures, conferenc

    Feature-based visual odometry prior for real-time semi-dense stereo SLAM

    Full text link
    Robust and fast motion estimation and mapping is a key prerequisite for autonomous operation of mobile robots. The goal of performing this task solely on a stereo pair of video cameras is highly demanding and bears conflicting objectives: on one hand, the motion has to be tracked fast and reliably, on the other hand, high-level functions like navigation and obstacle avoidance depend crucially on a complete and accurate environment representation. In this work, we propose a two-layer approach for visual odometry and SLAM with stereo cameras that runs in real-time and combines feature-based matching with semi-dense direct image alignment. Our method initializes semi-dense depth estimation, which is computationally expensive, from motion that is tracked by a fast but robust keypoint-based method. Experiments on public benchmark and proprietary datasets show that our approach is faster than state-of-the-art methods without losing accuracy and yields comparable map building capabilities. Moreover, our approach is shown to handle large inter-frame motion and illumination changes much more robustly than its direct counterparts

    CREATE: Multimodal Dataset for Unsupervised Learning, Generative Modeling and Prediction of Sensory Data from a Mobile Robot in Indoor Environments

    Full text link
    The CREATE database is composed of 14 hours of multimodal recordings from a mobile robotic platform based on the iRobot Create. The various sensors cover vision, audition, motors and proprioception. The dataset has been designed in the context of a mobile robot that can learn multimodal representations of its environment, thanks to its ability to navigate the environment. This ability can also be used to learn the dependencies and relationships between the different modalities of the robot (e.g. vision, audition), as they reflect both the external environment and the internal state of the robot. The provided multimodal dataset is expected to have multiple usages, such as multimodal unsupervised object learning, multimodal prediction and egomotion/causality detection.Comment: The CREATE dataset is Open access and available on IEEE Dataport (https://ieee-dataport.org/open-access/create-multimodal-dataset-unsupervised-learning-and-generative-modeling-sensory-data

    Extending Monocular Visual Odometry to Stereo Camera Systems by Scale Optimization

    Full text link
    This paper proposes a novel approach for extending monocular visual odometry to a stereo camera system. The proposed method uses an additional camera to accurately estimate and optimize the scale of the monocular visual odometry, rather than triangulating 3D points from stereo matching. Specifically, the 3D points generated by the monocular visual odometry are projected onto the other camera of the stereo pair, and the scale is recovered and optimized by directly minimizing the photometric error. It is computationally efficient, adding minimal overhead to the stereo vision system compared to straightforward stereo matching, and is robust to repetitive texture. Additionally, direct scale optimization enables stereo visual odometry to be purely based on the direct method. Extensive evaluation on public datasets (e.g., KITTI), and outdoor environments (both terrestrial and underwater) demonstrates the accuracy and efficiency of a stereo visual odometry approach extended by scale optimization, and its robustness in environments with challenging textures

    Fusion of Monocular Vision and Radio-based Ranging for Global Scale Estimation and Drift Mitigation

    Full text link
    Monocular vision-based Simultaneous Localization and Mapping (SLAM) is used for various purposes due to its advantages in cost, simple setup, as well as availability in the environments where navigation with satellites is not effective. However, camera motion and map points can be estimated only up to a global scale factor with monocular vision. Moreover, estimation error accumulates over time without bound, if the camera cannot detect the previously observed map points for closing a loop. We propose an innovative approach to estimate a global scale factor and reduce drifts in monocular vision-based localization with an additional single ranging link. Our method can be easily integrated with the back-end of monocular visual SLAM methods. We demonstrate our algorithm with real datasets collected on a rover, and show the evaluation results.Comment: Submitted to the International Conference on Robotics and Automation (ICRA) 201

    Keyframe-based Direct Thermal-Inertial Odometry

    Full text link
    This paper proposes an approach for fusing direct radiometric data from a thermal camera with inertial measurements to extend the robotic capabilities of aerial robots for navigation in GPS-denied and visually degraded environments in the conditions of darkness and in the presence of airborne obscurants such as dust, fog and smoke. An optimization based approach is developed that jointly minimizes the re-projection error of 3D landmarks and inertial measurement errors. The developed solution is extensively verified against both ground-truth in an indoor laboratory setting, as well as inside an underground mine under severely visually degraded conditions.Comment: 7 pages, 8 figures, Accepted at International Conference on Robotics and Automation (ICRA) 201
    corecore