34 research outputs found

    ModDrop: adaptive multi-modal gesture recognition

    Full text link
    We present a method for gesture detection and localisation based on multi-scale and multi-modal deep learning. Each visual modality captures spatial information at a particular spatial scale (such as motion of the upper body or a hand), and the whole system operates at three temporal scales. Key to our technique is a training strategy which exploits: i) careful initialization of individual modalities; and ii) gradual fusion involving random dropping of separate channels (dubbed ModDrop) for learning cross-modality correlations while preserving uniqueness of each modality-specific representation. We present experiments on the ChaLearn 2014 Looking at People Challenge gesture recognition track, in which we placed first out of 17 teams. Fusing multiple modalities at several spatial and temporal scales leads to a significant increase in recognition rates, allowing the model to compensate for errors of the individual classifiers as well as noise in the separate channels. Futhermore, the proposed ModDrop training technique ensures robustness of the classifier to missing signals in one or several channels to produce meaningful predictions from any number of available modalities. In addition, we demonstrate the applicability of the proposed fusion scheme to modalities of arbitrary nature by experiments on the same dataset augmented with audio.Comment: 14 pages, 7 figure

    Human Action Recognition Using Deep Probabilistic Graphical Models

    Get PDF
    Building intelligent systems that are capable of representing or extracting high-level representations from high-dimensional sensory data lies at the core of solving many A.I. related tasks. Human action recognition is an important topic in computer vision that lies in high-dimensional space. Its applications include robotics, video surveillance, human-computer interaction, user interface design, and multi-media video retrieval amongst others. A number of approaches have been proposed to extract representative features from high-dimensional temporal data, most commonly hard wired geometric or bio-inspired shape context features. This thesis first demonstrates some \emph{ad-hoc} hand-crafted rules for effectively encoding motion features, and later elicits a more generic approach for incorporating structured feature learning and reasoning, \ie deep probabilistic graphical models. The hierarchial dynamic framework first extracts high level features and then uses the learned representation for estimating emission probability to infer action sequences. We show that better action recognition can be achieved by replacing gaussian mixture models by Deep Neural Networks that contain many layers of features to predict probability distributions over states of Markov Models. The framework can be easily extended to include an ergodic state to segment and recognise actions simultaneously. The first part of the thesis focuses on analysis and applications of hand-crafted features for human action representation and classification. We show that the ``hard coded" concept of correlogram can incorporate correlations between time domain sequences and we further investigate multi-modal inputs, \eg depth sensor input and its unique traits for action recognition. The second part of this thesis focuses on marrying probabilistic graphical models with Deep Neural Networks (both Deep Belief Networks and Deep 3D Convolutional Neural Networks) for structured sequence prediction. The proposed Deep Dynamic Neural Network exhibits its general framework for structured 2D data representation and classification. This inspires us to further investigate for applying various graphical models for time-variant video sequences

    Visual scene recognition with biologically relevant generative models

    No full text
    This research focuses on developing visual object categorization methodologies that are based on machine learning techniques and biologically inspired generative models of visual scene recognition. Modelling the statistical variability in visual patterns, in the space of features extracted from them by an appropriate low level signal processing technique, is an important matter of investigation for both humans and machines. To study this problem, we have examined in detail two recent probabilistic models of vision: a simple multivariate Gaussian model as suggested by (Karklin & Lewicki, 2009) and a restricted Boltzmann machine (RBM) proposed by (Hinton, 2002). Both the models have been widely used for visual object classification and scene analysis tasks before. This research highlights that these models on their own are not plausible enough to perform the classification task, and suggests Fisher kernel as a means of inducing discrimination into these models for classification power. Our empirical results on standard benchmark data sets reveal that the classification performance of these generative models could be significantly boosted near to the state of the art performance, by drawing a Fisher kernel from compact generative models that computes the data labels in a fraction of total computation time. We compare the proposed technique with other distance based and kernel based classifiers to show how computationally efficient the Fisher kernels are. To the best of our knowledge, Fisher kernel has not been drawn from the RBM before, so the work presented in the thesis is novel in terms of its idea and application to vision problem
    corecore